Stem Cells: Cellular and Extracellular Requirements for Generation and Use

  • Gerd Bungartz
  • Kathryn Bungartz


Cell and stem cell technology embodies the efforts of biologists, bioengineers, and clinicians to develop approaches for the effective treatment of countless medical conditions from cancer, diabetes, and dementia to anemia, skin grafts, and hair loss. The technology of cell and stem cell manipulation bears the potential for these treatment options to be accessible and individualized, achieving the goals of personalized medicine. This chapter touches briefly on historic milestones in the field of stem cell research and provides an overview of discoveries that led to the understanding we have today. Thus, a concise introduction of the terms and definitions of stem cells is provided. Cellular and extracellular cues, such as transcriptional control and the stem cells niche, which in concert determine stem cell behavior, are addressed as well as examples of how this knowledge has been used for stem cell manipulation, in vivo culture and expansion and directed cell type specific differentiation. Finally, this chapter dedicates a section to the goal of generating desired cell types for therapeutic purposes from stem cells and discusses how they are currently studied in a clinical setting. For easy overview, a selection of clinical trials currently under way exploiting the pronounced potential of stem cells for medical purposes is presented in tabular form. Ethical concerns, which inevitably accompany the progress of research and use of stem cells, are addressed, leaving the reader with an unbiased presentation of arguments surrounding the debate of ethics in the stem cell field. Since it is impossible to provide a detailed description of the vast information that has accumulated over the last decades, a selection of the most important advances is provided. In each section, numerous references of review articles and original research papers invite the interested reader for further study.


Embryonic stem cells Adult stem cells Induced pluripotent stem cells Stem cell niche Stem cells in clinical trials 


  1. 1.
    Adams, G. B., & Scadden, D. T. (2006). The hematopoietic stem cell in its place. Nature Immunology. [pii]\r10.1038/ni1331.
  2. 2.
    Aguila, H. L., & Rowe, D. W. (2005). Skeletal development, bone remodeling, and hematopoiesis. Immunological Reviews. Scholar
  3. 3.
    Allum, N., Allansdottir, A., Gaskell, G., Jackson, J., Moldovan, A., Priest, S., et al. (2017). Religion and the public ethics of stem-cell research: Attitudes in Europe, Canada and the United States, 1–14.CrossRefGoogle Scholar
  4. 4.
    Becker, A. J., McCulloch, E. A, & Till, J. E. (1963a). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197(4866), 452–454. Scholar
  5. 5.
    Becker, A. J., McCulloch, E. A., & Till, J. E. (1963b). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature.
  6. 6.
    Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.CrossRefGoogle Scholar
  7. 7.
    Bülow, H. E., & Hobert, O. (2006). The molecular diversity of glycosaminoglycans shapes animal development. Annual Review of Cell and Developmental Biology. Scholar
  8. 8.
    Bungartz, G., Land, H., Scadden, D. T., & Emerson, S. G. (2012). NF-Y is necessary for hematopoietic stem cell proliferation and survival. Blood, 119(6), 1380–1389. Scholar
  9. 9.
    Bungartz, G., Stiller, S., Bauer, M., Müller, W., Schippers, A., Wagner, N., et al. (2006). Adult murine hematopoiesis can proceed without beta1 and beta7 integrins. Blood, 108(6), 1857–1864. Retrieved from Scholar
  10. 10.
    Cabarcas, S. M., Mathews, L. A., & Farrar, W. L. (2011). The cancer stem cell niche-there goes the neighborhood? International Journal of Cancer, 129(10), 2315–2327. Scholar
  11. 11.
    Campbell, K. H., McWhir, J., Ritchie, W. A., & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380(6569), 64–66. Scholar
  12. 12.
    Chao, M. P., Seita, J., & Weissman, I. L. (2008). Establishment of a normal hematopoietic and leukemia stem cell hierarchy establishment of a normal hematopoietic and leukemia stem cell hierarchy, LXXIII (Ogawa 1993), pp. 439–449.
  13. 13.
    Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., et al. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. Scholar
  14. 14.
    Domashenko, A. D., Danet-Desnoyers, G., Aron, A., Carroll, M. P., & Emerson, S. G. (2010). TAT-mediated transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hematopoietic progenitor cells. Blood, 116(15), 2676–83. Scholar
  15. 15.
    Domingues, M. J., Cao, H., Heazlewood, S. Y., Cao, B., & Nilsson, S. K. (2017). Niche extracellular matrix components and their influence on HSC. Journal of Cellular Biochemistry. Scholar
  16. 16.
    Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. TL–346. Science (New York, N.Y.). Scholar
  17. 17.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689. Scholar
  18. 18.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature. Scholar
  19. 19.
    Fuchs, E., & Chen, T. (2012). A matter of life and death: Self-renewal in stem cells. EMBO Reports. Scholar
  20. 20.
    Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: Stem cells and their niche. Cell. Scholar
  21. 21.
    Gupta, P., Oegema, T. R., Brazil, J. J., Dudek, A. Z., Slungaard, A., & Verfaillie, C. M. (1998). Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood, 92(12), 4641–4651. Retrieved from
  22. 22.
    Hadjimichael, C., Chanoumidou, K., Papadopoulou, N., Arampatzi, P., Papamatheakis, J., & Kretsovali, A. (2015). Common stemness regulators of embryonic and cancer stem cells. World Journal of Stem Cells. Scholar
  23. 23.
    Hall, B., Limaye, A., & Kulkarni, A. B. (2009). Overview: Generation of gene knockout mice. Current Protocols in Cell Biology. Scholar
  24. 24.
    Hyun, I., Hochedlinger, K., Jaenisch, R., & Yamanaka, S. (2007). New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell. Scholar
  25. 25.
    Iozzo, R. V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annual Review of Biochemistry. Scholar
  26. 26.
    Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5(2), 135–138. Scholar
  27. 27.
    Kanji, S., Pompili, V. J., & Das, H. (2011). Plasticity and maintenance of hematopoietic stem cells during development. Recent Patents on Biotechnology. Scholar
  28. 28.
    Kuroda, Y., & Dezawa, M. (2014). Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anatomical Record, 297(1), 98–110. Scholar
  29. 29.
    Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.
  30. 30.
    Lin, H. (2002). The stem-cell niche theory: lessons from flies. Nature Reviews. Genetics.
  31. 31.
    Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70. Scholar
  32. 32.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638. Scholar
  33. 33.
    Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology. Scholar
  34. 34.
    Metcalf, D., Moore, M. A. S., & Shortman, K. (1971). Adherence column and buoyant density separation o f bone marrow stem cells and more. Journal Cell Physiology, 78(3), 441–449.CrossRefGoogle Scholar
  35. 35.
    Nurcombe, V., & Cool, S. M. (2007). Heparan sulfate control of proliferation and differentiation in the stem cell niche. Critical Reviews in Eukaryotic Gene Expression, 17(2):159–171.CrossRefGoogle Scholar
  36. 36.
    Ohlstein, B., Kai, T., Decotto, E., & Spradling, A. (2004). The stem cell niche: Theme and variations. Current Opinion in Cell Biology. Scholar
  37. 37.
    Oldberg, A., Antonsson, P., Hedbom, E., & Heinegard, D. (1990). Structure and function of extracellular matrix proteoglycans. Biochemical Society Transactions, 18(5), 789–792.CrossRefGoogle Scholar
  38. 38.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147. Retrieved from Scholar
  39. 39.
    Raaijmakers, M. H. G. P., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., et al. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature.
  40. 40.
    Rodgers, K. D., San Antonio, J. D., & Jacenko, O. (2008). Heparan sulfate proteoglycans: A GAGgle of skeletal-hematopoietic regulators. Developmental Dynamics, 237(10), 2622–2642. Scholar
  41. 41.
    Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25 https://Chronicischaemicmitralregurgitation.Currenttreatmentresultsandnewmechanism-basedsurgicalapproaches.
  42. 42.
    Seydoux, G., & Braun, R. E. (2006). Pathway to totipotency: Lessons from germ cells. Cell, 127(5), 891–904. Scholar
  43. 43.
    Sheridan, C. (2017). CRISPR therapeutics push into human testing. Nature Biotechnology, 35, 3. Retrieved from Scholar
  44. 44.
    Stadtfeld, M., Hochedlinger, K., Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: History, mechanisms, and applications. Genes & Development. Scholar
  45. 45.
    Suhr, F., Delhasse, Y., Bungartz, G., Schmidt, A., Pfannkuche, K., & Bloch, W. (2013). Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res, 11(2), 951–964. [pii]\r10.1016/j.scr.2013.05.010.CrossRefGoogle Scholar
  46. 46.
    Taichman, R. S., Dc, W., & Taichman, R. S. (2011). Blood and bone : Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood, 105(7), 2631–2639. Scholar
  47. 47.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. Scholar
  48. 48.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. Scholar
  49. 49.
    Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. Scholar
  50. 50.
    Thoms, J. A., Joseph, I.-E., Sander, S. S., Waknitz, M. A., Swiergiel, J. J., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(2391), 1145–1147.CrossRefGoogle Scholar
  51. 51.
    Thomson, J. A., Itskovitz-eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Advancement Of Science, 282(5391), 1145–1147. Scholar
  52. 52.
    Vunjak-Novakovic, G., & Scadden, D. T. D. T. (2011). Biomimetic platforms for human stem cell research. Cell Stem Cell. Scholar
  53. 53.
    Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell 116(Icm), 639–648.CrossRefGoogle Scholar
  54. 54.
    Wiles, K., Fishman, J. M., De Coppi, P., & Birchall, M. A. (2016). The host immune response to tissue-engineered organs: Current problems and future directions. Tissue Engineering Part B: Reviews, 22(3), 208–219. Scholar
  55. 55.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature. Scholar
  56. 56.
    Ye, J., Ge, J., Zhang, X., Cheng, L., Zhang, Z., He, S., et al. (2015). Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 26(1), 34–45. Scholar
  57. 57.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, N.Y.).
  58. 58.
    Zhao, X., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature.
  59. 59.
    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hochschule DöpferCologneGermany
  2. 2.K.D. Bungartz, LLCRivertonUSA

Personalised recommendations