Skip to main content

The Search for Signatures of Life and Habitability on Planets and Moons of Our Solar System

  • Chapter
  • First Online:
Biological, Physical and Technical Basics of Cell Engineering

Abstract

In the endeavor to search for signs of extraterrestrial life within the Solar System our neighbor planet Mars and the moons Europa and Enceladus of the outer planets are the most promising candidates. For this purpose, the German Aerospace Center DLR is developing the following devices for in situ exploration: VaMEx (Valles Marineris Explorer), a network of small rovers and walking/crawling and flying robots, to explore the deep canyon of Mars; and the ice-moles EurEx (Europa Explorer) and EnEx (Enceladus Explorer) for the exploration of the subglacial oceans of Europa and Enceladus. The realization of those projects (e.g., VaMEx mission by 2035, and EurEx mission not before 2050) requires their involvement in a global exploration program, comparable to the program of the Global Exploration Roadmap, which has been developed by 14 space agencies with the final goal of bringing human explorers to Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carr, M. H., Belton, M. J. S., Chapman, C. R., Davies, M. E., Geissler, P., Greenberg, R., et al. (1998). Evidence for a subsurface ocean on Europa. Nature, 391, 363–365.

    Article  Google Scholar 

  2. Cockell, C. S., Bush, T., Bryce, C., Direito, S., Fox-Powell, M., Harrison, J. P., et al. (2016). Habitability: A review. Astrobiology, 16, 89–117.

    Article  Google Scholar 

  3. Cockell, C. S., & Westall, F. (2004). A postulate to assess ‘habitability’. International Journal of Astrobiology, 3, 157–163.

    Article  Google Scholar 

  4. Collinson, G. A., Frahm, R. A., Glocer, A., Coates, A. J., Grebowsky, J. M., & Barabash, S. (2016). The electric wind of Venus: A global and persistent ‘polar wind’-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 43, 5926–5934.

    Article  Google Scholar 

  5. Dachwald, B., Xu, C., Feldmann, M., & Plescher, E. (2011). Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier. Geophysical Research Abstracts, 13, 4943.

    Google Scholar 

  6. De Duve, C. (2011). Life as a cosmic imperative? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369, 620–623.

    Article  Google Scholar 

  7. Dohm, J. M., Williams, J. P., Anderson, R. C., Ruiz, J., McGuire, P. C., Komatsu, G., et al. (2009). New evidence for a magmatic influence on the origin of Valles Marineris, Mars. Journal of Volcanology and Geothermal Research, 185, 12–27.

    Article  Google Scholar 

  8. Edwards, C. S., & Piqueux, S. (2016). The water content of recurring slope lineae on Mars. Geophysical Research Letters, 43, 8912–8919.

    Article  Google Scholar 

  9. Falconí, G. P., & Holzapfel, F. (2013). Adaptive fault tolerant control allocation for a hexacopter system. In Proceedings of the American Control Conference, 2016 (pp. 6760–6766).

    Google Scholar 

  10. Falconí, G. P., Schatz, S. P., & Holzapfel, F. (2016). Fault tolerant control of a hexarotor using a command governor augmentation. In 24th Mediterranean Conference on Control and Automation (MED), 2016 (pp. 182–187).

    Google Scholar 

  11. Gourronc, M., Bourgeois, O., Mège, D., Pochat, S., Bultel, B., Massé, M., et al. (2014). One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator. Geomorphology, 204, 235–255.

    Article  Google Scholar 

  12. Hand, K. (2017). The search for life in Oceans beyond Earth, Space science week public lecture. Washington D.C., USA: National Academy of Sciences.

    Google Scholar 

  13. Horneck, G. (2000). The microbial world and the case for Mars. Planetary and Space Science, 48, 1053–1063.

    Article  Google Scholar 

  14. Horneck, G., Walter, N., Westall, F., Grenfell, J. L., Martin, W. F., Gomez, F., et al. (2016). AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3), 201–243. (Special Issue).

    Article  Google Scholar 

  15. Horvath, J. C., Carsey, F. D., Cutts, J. A., Jones, J. A., Johnson, E. D., Landry, B. M., … & Jeng, T. W. (1997, July). Searching for ice and ocean biogenic activity on Europa and Earth. In Optical Science, Engineering and Instrumentation’97 (pp. 490–500). International Society for Optics and Photonics.

    Google Scholar 

  16. Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108–128.

    Article  Google Scholar 

  17. Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780.

    Article  Google Scholar 

  18. Kminek, G., & Rummel, J. (2015). COSPAR’s Planetary Protection Policy. Space Research Today, 193, 1–14. (COSPAR’s information bulletin).

    Google Scholar 

  19. Konstantinidis, K., Martinez, C. L. F., Dachwald, B., Ohndorf, A., Dykta, P., Bowitz, P., … & Förstner, R. (2015). A lander mission to probe subglacial water on Saturn’s moon Enceladus for life. Acta astronautica, 106, 63–89.

    Article  Google Scholar 

  20. Kowalski, J., Linder, P., Zierke, S., von Wulfen, B., Clemens, J., Konstantinidis, K., et al. (2016). Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Regions Science and Technology, 123, 53–70.

    Article  Google Scholar 

  21. Kulikov, Yu N, Lammer, H., Lichtenegger, H. I. M., Terada, N., Ribas, I., Kolb, C., et al. (2006). Atmospheric and water loss from early Venus. Planetary and Space Science, 54, 1425–1444.

    Article  Google Scholar 

  22. Lammer, H., Selsis, F., Penz, T., Amerstorfer, U. V., Lichtenegger, H. I. M., Kolb, C., et al. (2005). Atmospheric evolution and history of water on Mars. In T. Tokano (Ed.), Water on Mars and Life (pp. 25–44)., Advances in astrobiology and biogeophysics Berlin: Springer.

    Google Scholar 

  23. Lammer, H., Bredehöft, J. H., Coustenis, A., Khodachenko, M. L., Kaltenegger, L., Grasset, O., et al. (2009). What makes a planet habitable? The Astronomy and Astrophysics Review, 17, 181–249.

    Article  Google Scholar 

  24. Leimena, W., Artmann, G. M., Dachwald, B., Artmann, A., Goßmann, M., & Digel, I. (2010). Feasibility of an in-situ microbial decontamination of an ice-melting probe. Eurasian Chemico-Technological Journal, 12(2), 145–150.

    Article  Google Scholar 

  25. Lemke, M. K., Funke, O., Klein, V., Montenegro, S., Schilling, K., & Buehler, C., et al. (2017). German large national mission candidate SKAD—a satellite-based cooperative autonomous drone swarm for exploration. In Submitted to 68th International Astronautical Congress 2017.

    Google Scholar 

  26. Leone, G. (2014). A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. Journal of Volcanology and Geothermal Research, 277, 1–8.

    Article  Google Scholar 

  27. Léveillé, R. J., & Datta, S. (2009). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planetary and Space Science, 58(2010), 592–598.

    Google Scholar 

  28. Lunine, J. I. (2017). Ocean worlds exploration. Acta Astronautica, 131, 123–130.

    Article  Google Scholar 

  29. Martín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., & Genzer, M. (2015). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8(5), 357–361.

    Article  Google Scholar 

  30. McEwen, A. S., Ojha, L., Dundas, C. M., Mattson, S. S., Byrne, S., Wray, J. J., et al. (2011). Seasonal Flows on Warm Martian Slopes. Science, 333, 740–743.

    Article  Google Scholar 

  31. McEwan, A, Chojnacki, M., Dundas, C., Ojha, L., Masse, M., & Schaefer, E., et al. (2015). Recurring slope lineae on Mars: Atmospheric Origin? EPSC Abstracts, 10, EPSC2015-786-1.

    Google Scholar 

  32. McKay, C. P., Anbar, A. D., Porco, C., & Tsou, P. (2014). Follow the plume: The habitability of enceladus. Astrobiology, 14, 352–355.

    Article  Google Scholar 

  33. Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 103(1–2), 5–47.

    Article  Google Scholar 

  34. Nimmo, F., & Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal Geophysical Research, 105(E5), 11969–11979.

    Article  Google Scholar 

  35. Ojha, L., Wilhelm, M. B., Murchie, S. L., McEwen, A. S., Wray, J. J., Hanley, J., et al. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience. https://doi.org/10.1038/ngeo2546.

    Article  Google Scholar 

  36. Okubo, C. H. (2016). Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars. Icarus, 269, 23–37.

    Article  Google Scholar 

  37. Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, J. E., et al. (2008). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604–607.

    Article  Google Scholar 

  38. Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., et al. (2014). Transient water vapor at Europa’s south pole. Science, 343, 171–174.

    Article  Google Scholar 

  39. Sand, S., Zhang, S., Mühlegg, M., Falconi, G., Zhu, C., & Krüger, T., et al. (2013). Swarm exploration and navigation on Mars. In 2013 International Conference on Localization and GNSS (ICL-GNSS).

    Google Scholar 

  40. Sotin, C., & Prieur, D. (2007). Jupiter’s Moon Europa: Geology and habitability. In G. Horneck & P. Rettberg (Eds.), Complete course in astrobiology (pp. 253–271). Germany: Wiley-VCH, Weinhiem.

    Chapter  Google Scholar 

  41. Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiss, M., et al. (2006). Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416–1418.

    Article  Google Scholar 

  42. Stillman, D. E., Michaels, T. I., Grimm, R. E., & Hanley, J. (2016). Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer. Icarus, 265, 125–138.

    Article  Google Scholar 

  43. Tokano, T. (Ed.). (2005). Water on Mars and Life., Advances in astrobiology and biogeophysics Berlin: Springer.

    Google Scholar 

  44. Ulamec, S., Biele, J., Funke, O., & Engelhardt, M. (2006). Access to glacial and subglacial environments in the Solar System by melting probe technology. Reviews in Environmental Science and Bio/Technology, 6(2006), 71–94.

    Google Scholar 

  45. Vance, S., Harnmeijer, J., Kimura, J., Hussmann, H., deMartin, B., & Brown, J. M. (2007). Hydrothermal systems in small Ocean planets. Astrobiology, 7(6), 987–1005.

    Article  Google Scholar 

  46. Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., et al. (2009). Liquid water on Enceladus from observations of ammonia and 40 A in the plume. Nature, 460, 487–490.

    Article  Google Scholar 

  47. Westall, F. (2011). Early life. In: M. Gargaud, P. López-Garcia, & H. Martin (Eds), Origins and Evolution of Life: An astrobiology perspective (pp. 391–413). Cambridge University Press.

    Google Scholar 

  48. Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., et al. (2015). Biosignatures on Mars: What, where, and how? implications for the search for martian life. Astrobiology, 15(11), 998–1029.

    Article  Google Scholar 

  49. Wirtz, M., & Hildebrand, M. (2016). IceShuttle Teredo: An Ice-Penetrating Robotic System to Transport an Exploration AUV into the Ocean of Jupiter’s Moon Europa. In 67th International Astronautical Congress (IAC), Guadalajara, Mexico, September 26–30, 2016.

    Google Scholar 

  50. Zimmerman, W., Bryant, S., Zitzelberger, J., & Nesmith, B. (2001, February). A radioisotope powered cryobot for penetrating the Europan ice shell. In M. S. El-Genk & M. J. Bragg (Eds.), AIP Conference Proceedings (Vol. 552, No. 1, pp. 707–715). AIP.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Funke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Funke, O., Horneck, G. (2018). The Search for Signatures of Life and Habitability on Planets and Moons of Our Solar System. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics