Abstract
In the endeavor to search for signs of extraterrestrial life within the Solar System our neighbor planet Mars and the moons Europa and Enceladus of the outer planets are the most promising candidates. For this purpose, the German Aerospace Center DLR is developing the following devices for in situ exploration: VaMEx (Valles Marineris Explorer), a network of small rovers and walking/crawling and flying robots, to explore the deep canyon of Mars; and the ice-moles EurEx (Europa Explorer) and EnEx (Enceladus Explorer) for the exploration of the subglacial oceans of Europa and Enceladus. The realization of those projects (e.g., VaMEx mission by 2035, and EurEx mission not before 2050) requires their involvement in a global exploration program, comparable to the program of the Global Exploration Roadmap, which has been developed by 14 space agencies with the final goal of bringing human explorers to Mars.
This is a preview of subscription content, access via your institution.
Buying options

Credit NASA


Credit NASA/JPL-Caltech/Univ. of Arizona


Credit DFKI/VaMEx-Team

Courtesy OHB System AG, 2017



Credit FH Aachen/EnEx-Team

Credit DFKI
References
Carr, M. H., Belton, M. J. S., Chapman, C. R., Davies, M. E., Geissler, P., Greenberg, R., et al. (1998). Evidence for a subsurface ocean on Europa. Nature, 391, 363–365.
Cockell, C. S., Bush, T., Bryce, C., Direito, S., Fox-Powell, M., Harrison, J. P., et al. (2016). Habitability: A review. Astrobiology, 16, 89–117.
Cockell, C. S., & Westall, F. (2004). A postulate to assess ‘habitability’. International Journal of Astrobiology, 3, 157–163.
Collinson, G. A., Frahm, R. A., Glocer, A., Coates, A. J., Grebowsky, J. M., & Barabash, S. (2016). The electric wind of Venus: A global and persistent ‘polar wind’-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 43, 5926–5934.
Dachwald, B., Xu, C., Feldmann, M., & Plescher, E. (2011). Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier. Geophysical Research Abstracts, 13, 4943.
De Duve, C. (2011). Life as a cosmic imperative? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369, 620–623.
Dohm, J. M., Williams, J. P., Anderson, R. C., Ruiz, J., McGuire, P. C., Komatsu, G., et al. (2009). New evidence for a magmatic influence on the origin of Valles Marineris, Mars. Journal of Volcanology and Geothermal Research, 185, 12–27.
Edwards, C. S., & Piqueux, S. (2016). The water content of recurring slope lineae on Mars. Geophysical Research Letters, 43, 8912–8919.
Falconí, G. P., & Holzapfel, F. (2013). Adaptive fault tolerant control allocation for a hexacopter system. In Proceedings of the American Control Conference, 2016 (pp. 6760–6766).
Falconí, G. P., Schatz, S. P., & Holzapfel, F. (2016). Fault tolerant control of a hexarotor using a command governor augmentation. In 24th Mediterranean Conference on Control and Automation (MED), 2016 (pp. 182–187).
Gourronc, M., Bourgeois, O., Mège, D., Pochat, S., Bultel, B., Massé, M., et al. (2014). One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5 Gy old glacial landsystem along the Martian equator. Geomorphology, 204, 235–255.
Hand, K. (2017). The search for life in Oceans beyond Earth, Space science week public lecture. Washington D.C., USA: National Academy of Sciences.
Horneck, G. (2000). The microbial world and the case for Mars. Planetary and Space Science, 48, 1053–1063.
Horneck, G., Walter, N., Westall, F., Grenfell, J. L., Martin, W. F., Gomez, F., et al. (2016). AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3), 201–243. (Special Issue).
Horvath, J. C., Carsey, F. D., Cutts, J. A., Jones, J. A., Johnson, E. D., Landry, B. M., … & Jeng, T. W. (1997, July). Searching for ice and ocean biogenic activity on Europa and Earth. In Optical Science, Engineering and Instrumentation’97 (pp. 490–500). International Society for Optics and Photonics.
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108–128.
Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780.
Kminek, G., & Rummel, J. (2015). COSPAR’s Planetary Protection Policy. Space Research Today, 193, 1–14. (COSPAR’s information bulletin).
Konstantinidis, K., Martinez, C. L. F., Dachwald, B., Ohndorf, A., Dykta, P., Bowitz, P., … & Förstner, R. (2015). A lander mission to probe subglacial water on Saturn’s moon Enceladus for life. Acta astronautica, 106, 63–89.
Kowalski, J., Linder, P., Zierke, S., von Wulfen, B., Clemens, J., Konstantinidis, K., et al. (2016). Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Regions Science and Technology, 123, 53–70.
Kulikov, Yu N, Lammer, H., Lichtenegger, H. I. M., Terada, N., Ribas, I., Kolb, C., et al. (2006). Atmospheric and water loss from early Venus. Planetary and Space Science, 54, 1425–1444.
Lammer, H., Selsis, F., Penz, T., Amerstorfer, U. V., Lichtenegger, H. I. M., Kolb, C., et al. (2005). Atmospheric evolution and history of water on Mars. In T. Tokano (Ed.), Water on Mars and Life (pp. 25–44)., Advances in astrobiology and biogeophysics Berlin: Springer.
Lammer, H., Bredehöft, J. H., Coustenis, A., Khodachenko, M. L., Kaltenegger, L., Grasset, O., et al. (2009). What makes a planet habitable? The Astronomy and Astrophysics Review, 17, 181–249.
Leimena, W., Artmann, G. M., Dachwald, B., Artmann, A., Goßmann, M., & Digel, I. (2010). Feasibility of an in-situ microbial decontamination of an ice-melting probe. Eurasian Chemico-Technological Journal, 12(2), 145–150.
Lemke, M. K., Funke, O., Klein, V., Montenegro, S., Schilling, K., & Buehler, C., et al. (2017). German large national mission candidate SKAD—a satellite-based cooperative autonomous drone swarm for exploration. In Submitted to 68th International Astronautical Congress 2017.
Leone, G. (2014). A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. Journal of Volcanology and Geothermal Research, 277, 1–8.
Léveillé, R. J., & Datta, S. (2009). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planetary and Space Science, 58(2010), 592–598.
Lunine, J. I. (2017). Ocean worlds exploration. Acta Astronautica, 131, 123–130.
Martín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., & Genzer, M. (2015). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8(5), 357–361.
McEwen, A. S., Ojha, L., Dundas, C. M., Mattson, S. S., Byrne, S., Wray, J. J., et al. (2011). Seasonal Flows on Warm Martian Slopes. Science, 333, 740–743.
McEwan, A, Chojnacki, M., Dundas, C., Ojha, L., Masse, M., & Schaefer, E., et al. (2015). Recurring slope lineae on Mars: Atmospheric Origin? EPSC Abstracts, 10, EPSC2015-786-1.
McKay, C. P., Anbar, A. D., Porco, C., & Tsou, P. (2014). Follow the plume: The habitability of enceladus. Astrobiology, 14, 352–355.
Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 103(1–2), 5–47.
Nimmo, F., & Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal Geophysical Research, 105(E5), 11969–11979.
Ojha, L., Wilhelm, M. B., Murchie, S. L., McEwen, A. S., Wray, J. J., Hanley, J., et al. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience. https://doi.org/10.1038/ngeo2546.
Okubo, C. H. (2016). Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars. Icarus, 269, 23–37.
Proskurowski, G., Lilley, M. D., Seewald, J. S., Früh-Green, G. L., Olson, E. J., Lupton, J. E., et al. (2008). Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319, 604–607.
Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., et al. (2014). Transient water vapor at Europa’s south pole. Science, 343, 171–174.
Sand, S., Zhang, S., Mühlegg, M., Falconi, G., Zhu, C., & Krüger, T., et al. (2013). Swarm exploration and navigation on Mars. In 2013 International Conference on Localization and GNSS (ICL-GNSS).
Sotin, C., & Prieur, D. (2007). Jupiter’s Moon Europa: Geology and habitability. In G. Horneck & P. Rettberg (Eds.), Complete course in astrobiology (pp. 253–271). Germany: Wiley-VCH, Weinhiem.
Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiss, M., et al. (2006). Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416–1418.
Stillman, D. E., Michaels, T. I., Grimm, R. E., & Hanley, J. (2016). Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer. Icarus, 265, 125–138.
Tokano, T. (Ed.). (2005). Water on Mars and Life., Advances in astrobiology and biogeophysics Berlin: Springer.
Ulamec, S., Biele, J., Funke, O., & Engelhardt, M. (2006). Access to glacial and subglacial environments in the Solar System by melting probe technology. Reviews in Environmental Science and Bio/Technology, 6(2006), 71–94.
Vance, S., Harnmeijer, J., Kimura, J., Hussmann, H., deMartin, B., & Brown, J. M. (2007). Hydrothermal systems in small Ocean planets. Astrobiology, 7(6), 987–1005.
Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., et al. (2009). Liquid water on Enceladus from observations of ammonia and 40 A in the plume. Nature, 460, 487–490.
Westall, F. (2011). Early life. In: M. Gargaud, P. López-Garcia, & H. Martin (Eds), Origins and Evolution of Life: An astrobiology perspective (pp. 391–413). Cambridge University Press.
Westall, F., Foucher, F., Bost, N., Bertrand, M., Loizeau, D., Vago, J. L., et al. (2015). Biosignatures on Mars: What, where, and how? implications for the search for martian life. Astrobiology, 15(11), 998–1029.
Wirtz, M., & Hildebrand, M. (2016). IceShuttle Teredo: An Ice-Penetrating Robotic System to Transport an Exploration AUV into the Ocean of Jupiter’s Moon Europa. In 67th International Astronautical Congress (IAC), Guadalajara, Mexico, September 26–30, 2016.
Zimmerman, W., Bryant, S., Zitzelberger, J., & Nesmith, B. (2001, February). A radioisotope powered cryobot for penetrating the Europan ice shell. In M. S. El-Genk & M. J. Bragg (Eds.), AIP Conference Proceedings (Vol. 552, No. 1, pp. 707–715). AIP.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Funke, O., Horneck, G. (2018). The Search for Signatures of Life and Habitability on Planets and Moons of Our Solar System. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_20
Download citation
DOI: https://doi.org/10.1007/978-981-10-7904-7_20
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7903-0
Online ISBN: 978-981-10-7904-7
eBook Packages: EngineeringEngineering (R0)