Mechanics of Soft Tissue Reactions to Textile Mesh Implants

  • Aroj Bhattarai
  • Manfred Staat


For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment.



The first author has been partially funded by the German Federal Ministry of Education and Research through the FHprofUnt project BINGO (03FH073PX2). We would also like to thank our project partner FEG Textiltechnik mbH, Aachen, Germany for providing the prostheses, Nils Andreas Krämer, PD MD, Uniklinikum RWTH Aachen, Germany for providing MRI data, and Andreas Horbach, DI, and our students Christian Halbauer, Viola Gruben for their help with experiments and providing the results from their bachelor theses. The authors would also like to acknowledge Prof. Dr. Melinda Harman, Clemson University for providing permission to use the images reprinted in Fig. 9.


  1. 1.
    Alaedeen, D. I., Lipman, J., Medalie, D., & Rosen, M. J. (2007). The single staged approach to the surgical management of abdominal wall hernias in contaminated fields. Hernia, 11(1), 41–45.CrossRefGoogle Scholar
  2. 2.
    Amid, P. K. (1997). Classification of biomaterials and their related complications in abdominal wall surgery. Hernia, 1(1), 15–21.CrossRefGoogle Scholar
  3. 3.
    Amid, P. K. (2004). Shrinkage: fake or fact? In V. Schumpelick & L. M. Nyhus (Eds.), Meshes: benefits and risks. Berlin: Springer.Google Scholar
  4. 4.
    Anderson, J. M. (1988). Inflammatory response to implants. ASAIO Transactions, 34(2), 101–107.CrossRefGoogle Scholar
  5. 5.
    Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100.CrossRefGoogle Scholar
  6. 6.
    Anurov, M. V., Titkova, S. M., & Oettinger, A. P. (2012). Biomechanical compatibility of surgical mesh and fascia being reinforced: Dependence of experimental hernia defect repair results on anisotropic surgical mesh positioning. Hernia, 16(2), 199–210.CrossRefGoogle Scholar
  7. 7.
    Arshady, R. (2003). Polymeric biomaterials: chemistry, concepts, criteria. In R. Arshady (Ed.), Introduction to polymeric biomaterials: the polymeric biomaterials series (pp. 1–62). London: Citus Books.Google Scholar
  8. 8.
    Baktir, A., Dogru, O., Girgin, M., Aygen, E., Kanat, B. H., Dabak, D. O., et al. (2013). The effects of different prosthetic materials on the formation of collagen types in incisional hernia. Hernia, 17(2), 249–253.CrossRefGoogle Scholar
  9. 9.
    Bay-Nielsen, M., Kehlet, H., Strand, L.,  Malmstrøm. J., Andersen, F. H., Wara, P. et al. (2001). Quality assessment of 26,304 herniorrhaphies in Denmark: A prospective nationwide study. Lancet, 358(9288), 1124–1128.CrossRefGoogle Scholar
  10. 10.
    Bendavid, R., & Kux, M. (2001). Seromas. In R. Bendavid, J. Abrahamson, M. E. Arregui, J. B. Flament, & E. H. Phillips (Eds.), Abdominal wall hernias: Principles and management (pp. 753–756). New York: Springer.CrossRefGoogle Scholar
  11. 11.
    Birk, D. E., Fitch, J. M., Babiarz, J. P., Doane, K. J., & Linsenmayer, T. F. (1990). Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. Journal of Cell Science, 95(Pt 4), 649–657.Google Scholar
  12. 12.
    Brown, C. N., & Finch, J. G. (2010). Which mesh for hernia repair? Annals of the Royal College of Surgeons of England, 92(4), 272–278.CrossRefGoogle Scholar
  13. 13.
    Brown, G. L., Richardson, J. D., Malangoni, M. A., Tobin, G. R., Ackerman, D., & Polk, H. C. (1985). Comparison of prosthetic material for abdominal wall reconstruction in the presence of contamination and infection. Annals of Surgery, 201(6), 705–711.CrossRefGoogle Scholar
  14. 14.
    Burger, J. W. A., Luijendijk, R. W., Hop, W. C. J., Halm, J. A., Verdaasdonk, E. G., & Jeekel, J. (2004). Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Annals of Surgery, 240(4), 578–585.Google Scholar
  15. 15.
    Casey, E. M. (2015). Physical characterization of surgical mesh after function in hernia repair (Master Thesis). Clemson University, South Carolina, USA. All Theses. Paper 2085.Google Scholar
  16. 16.
    Chen, E. H., Grote, E., Mohler, W., et al. (2007). Cell-cell fusion. FEBS Letters, 581(11), 2181–2193.CrossRefGoogle Scholar
  17. 17.
    Choe, J. M., Kothandapani, R., James, L., & Bowling, D. (2001). Autologous, cadaveric, and synthetic materials used in sling surgery: comparative biomechanical analysis. Urology, 58(3), 482–486.CrossRefGoogle Scholar
  18. 18.
    Chuback, J. A., Singh, R. S., Sills, C., & Dick, L. S. (2000). Small bowel obstruction resulting from mesh plug migration after open inguinal hernia repair. Surgery, 127(4), 475–476.CrossRefGoogle Scholar
  19. 19.
    Ciritsis, A., Horbach, A., Staat, M., Kuhl, C. K., & Kraemer, N. A. (2018). Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo. Journal of Biomedical Materials Research Part B: Applied Biomaterials 106(2), 827–833.Google Scholar
  20. 20.
    Cobb, W. S., Burns, J. M., Peindl, R. D., Carbonell, A. M., Matthews, B. D., Kercher, K. W., et al. (2006). Textile analysis of heavy-weight, mid-weight and light-weight polypropylene mesh in a porcine ventral hernia model. Journal of Surgical Research, 136(1), 1–7.CrossRefGoogle Scholar
  21. 21.
    Cobb, W. S., Kercher, K. W., & Heniford, B. T. (2005). The argument for lightweight polypropylene mesh in hernia repair. Surgical Innovation, 12(1), 63–69.CrossRefGoogle Scholar
  22. 22.
    Conze, J., Junge, K., Weiss, C., Anurov, M., Oettinger, A., Klinge, U., et al. (2008). New polymer for intra-abdominal meshes-PVDF copolymer. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 87(2), 321–328.CrossRefGoogle Scholar
  23. 23.
    Deligiannidis, N., Papavasiliou, I., Sapalidis, K., Kesisoglou, I., Papavramidis, S., & Gamvros, O. (2002). The use of three different mesh materials in the treatment of abdominal wall defects. Hernia, 6(2), 51–55.CrossRefGoogle Scholar
  24. 24.
    Dietz, H. P., Vancaillie, P., Svehla, M., Walsh, W., Steensma, A. B., & Vancaillie, T. G. (2003). Mechanical properties of urogynecologic implant materials. International Urogynecology Journal and Pelvic Floor Dysfunction, 14(4), 239–243.CrossRefGoogle Scholar
  25. 25.
    Dương, M. T., Seifarth, V., Artmann, A.. T., Artmann, G. M., & Staat, M. (2018). Growth modelling promoting mechanical stimulation of smooth muscle cells of porcine tubular organs in a fibrin-PVDF scaffold. In G.M. Artmann, I.E. Digel, A. Zhubanova, A. Temiz Artmann (eds.), Biological, Physical and Technical Basics of Cell Engineering (pp. 211–234). Singapore: Springer Nature.  10.1007/978-981-10-7904-7_9.
  26. 26.
    Fenner, D. E. (2000). New surgical mesh. Clinical Obstetrics and Gynecology, 43(3), 650–658.CrossRefGoogle Scholar
  27. 27.
    Feola, A., Barone, W., Moalli, P., & Abramowitch, S. (2013). Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products. International Urogynecology Journal, 24(4), 559–564.CrossRefGoogle Scholar
  28. 28.
    Fischer, T., Ladurner, R., Gangkofer, A., Mussack, T., Reiser, M., & Lienemann, A. (2007). Functional cine MRI of the abdomen for the assessment of implanted synthetic mesh in patients after incisional hernia repair: initial results. European Radiology, 17(12), 3123–3129.CrossRefGoogle Scholar
  29. 29.
    Fleischmajer, R., Perlish, J. S., Burgeson, R. E., Shaikh-Bahai, F., & Timpl, R. (1990). Type I and type III collagen interactions during fibrillogenesis. Annals of the New York Academy of Sciences, 580, 161–175.CrossRefGoogle Scholar
  30. 30.
    Friedman, D. W., Boyd, C. D., Mackenzie, J. W., Norton, P., Olson, R. M., & Deak, S. B. (1993). Regulation of collagen gene expression in keloids and hypertrophic scars. Journal of Surgical Research, 55(2), 214–222.CrossRefGoogle Scholar
  31. 31.
    Frotscher, R., & Staat, M. (2014). Stresses produced by different textile mesh implants in a tissue equivalent. BioNanoMaterials, 15(1–2), 25–30.Google Scholar
  32. 32.
    Göretzlehner, U., & Müllen, A. (2007). PVDF als Implantat-Werkstoff in der Urogynäkologie. Biomaterialien, 8(S1), 28–29.Google Scholar
  33. 33.
    de la Gutiérrez, P. C., Vargas Romero, J., & Diéguez García, J. A. (2001). The value of CT diagnosis of hernia recurrence after prosthetic repair of ventral incisional hernias. European Radiology, 11(7), 1161–1164.CrossRefGoogle Scholar
  34. 34.
    Halbauer, C. (2014). Charakterisierung und Vergleich des mechanischen Verhaltens von in Gelatine gebetteten Netzimplantaten durch einen Aero-Bulgetest gegenüber einer FEM Simulation sowie die Entwicklung einer auf MRT-Scans basierenden 3D Visualisierungsmethode implantierter Netze. Unpublished bachelor thesis, Aachen University of Applied Sciences, Jülich.Google Scholar
  35. 35.
    Heniford, B. T., Park, A., Ramshaw, B. J., & Voeller, G. (2003). Laparoscopic repair of ventral hernias: Nine years’ experience with 850 consecutive hernias. Annals of Surgery, 238(3), 391–399.Google Scholar
  36. 36.
    Horbach, A. J., Duong, M. T., & Staat, M. (2017). Modelling of compressible and othotropic mesh implants based on optical deformation measurement. Journal of the Mechanical Behavior of Biomedical Materials, 74, 400–410.CrossRefGoogle Scholar
  37. 37.
    Hurme, T., Kalimo, H., Sandberg, M., Lehto, M., & Vuorio, E. (1991). Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Laboratory Investigation, 64(1), 76–84.Google Scholar
  38. 38.
    Jerabek, J., Novotny, T., Vesely, K., Cagas, J., Jedlicka, V., Vlcek, P., et al. (2014). Evaluation of three purely polypropylene meshes of different pore sizes in an onlay position in a New Zealand white rabbit model. Hernia, 18(6), 855–864.CrossRefGoogle Scholar
  39. 39.
    Junge, K., Binnebösel, M., Rosch, R., Jansen, M., Kämmer, D., Otto, J., et al. (2009). Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surgical Endoscopy, 23(2), 327–333.CrossRefGoogle Scholar
  40. 40.
    Junge, K., Binnebösel, M., von Trotha, K. T., Rosch, R., Klinge, U., Neumann, U. P., et al. (2012). Mesh biocompatibility: Effects of cellular inflammation and tissue remodelling. Langenbeck’s Archives of Surgery, 397(2), 255–270.CrossRefGoogle Scholar
  41. 41.
    Junge, K., Klinge, U., Rosch, R., Mertens, P. R., Kirch, J., Klosterhalfen, B., et al. (2004). Decreased collagen type I/III ratio in patients with recurring hernia after implantation with alloplastic prostheses. Langenbeck’s Archives of Surgery, 389(1), 17–22.Google Scholar
  42. 42.
    Klinge, U. (2007). Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World Journal of Surgery, 31(4), 867–868.CrossRefGoogle Scholar
  43. 43.
    Klinge, U., Binnebösel, M., Kuschel, S., & Schuessler, B. (2007). Demands and properties of alloplastic implants for the treatment of stress urinary incontinence. Expert Review of Medical Devices, 4(3), 349–359.CrossRefGoogle Scholar
  44. 44.
    Klinge, U., & Klosterhalfen, B. (2012). Modified classification of surgical meshes for hernia repair based on the analysis of 1,000 explanted meshes. Hernia, 16(3), 251–258.CrossRefGoogle Scholar
  45. 45.
    Klinge, U., Klosterhalfen, B., Müller, M., Ottinger, A. P., & Schumpelick V. (1998). Shrinking of polypropylene mesh in vivo: An experimental study in dogs. European Journal of Surgery, 164(12), 965–969.CrossRefGoogle Scholar
  46. 46.
    Klinge, U., Klosterhalfen, B., Birkenhauer, V., Junge, K., Conze, J., & Schumpelick, V. (2002). Impact of polymer pore size on the interface scar formation in a rat model. Journal of Surgical Research, 103(2), 208–214.CrossRefGoogle Scholar
  47. 47.
    Klinge, U., Park, J. K., & Klosterhalfen, B. (2013). The ideal mesh? Pathobiology, 80, 169–175.CrossRefGoogle Scholar
  48. 48.
    Klinge, U., Si, Z. Y., Zheng, H., Schumpelick, V., Bhardwaj, R. S., & Klosterhalfen, B. (2000). Abnormal collagen I to III distribution in the skin of patients with incisional hernia. European surgical Research, 32(1), 43–48.CrossRefGoogle Scholar
  49. 49.
    Klink, C. D., Junge, K., Binnebösel, M., et al. (2011). Comparison of long-term biocompatibility of PVDF and PP meshes. Journal of Investigative Surgery, 24(6), 292–299.CrossRefGoogle Scholar
  50. 50.
    Klosterhalfen, B., Junge, K., & Klinge, U. (2005). The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2(1), 103–117.CrossRefGoogle Scholar
  51. 51.
    Klosterhalfen, B., Klinge, U., & Schumpelick, V. (1998). Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials, 19(24), 2235–2246.CrossRefGoogle Scholar
  52. 52.
    Langer, C., Neufang, T., Kley, C., Liersch, T., & Becker, H. (2001). Central mesh recurrence after incisional hernia repair with Marlex are the meshes strong enough? Hernia, 5(3), 164–167.CrossRefGoogle Scholar
  53. 53.
    Laroche, G., Marois, Y., Schwarz, E., Guidoin, R., King, M. W., Pâris, E., et al. (1995). Polyvinylidene fluoride monofilament sutures: Can they be used safely for long-term anastomoses in the thoracic aorta? Artificial Organs, 19(11), 1190–1199.CrossRefGoogle Scholar
  54. 54.
    Law, N. W., & Ellis, H. (1988). Adhesion formation and peritoneal healing on prosthetic materials. Clinical Materials, 3(2), 95–101.CrossRefGoogle Scholar
  55. 55.
    Leber, G. E., Garb, J. L., Alexander, A. I., & Reed, W. P. (1998). Long-term complications associated with prosthetic repair of incisional hernias. Archives of Surgery, 133(4), 378–382.CrossRefGoogle Scholar
  56. 56.
    LeBlanc, K. A. (2001). The critical technical aspects of laparoscopic repair of ventral and incisional hernias. American Surgeon, 67(8), 809–812.Google Scholar
  57. 57.
    Lehr, S. C., & Schuricht, A. L. (2001). A minimally invasive approach for treating postoperative seromas after incisional hernia repair. JSLS-Journal of the Society of Laparoendoscopic Surgeons, 5(3), 267–271.Google Scholar
  58. 58.
    Liang, R., Abramowitch, S., Knight, K., Palcsey, S., Nolfi, A., Feola, A., et al. (2013). Vaginal degeneration following implantation of synthetic mesh with increased stiffness. British Journal of Obstetrics and Gynaecology, 120(2), 233–243.CrossRefGoogle Scholar
  59. 59.
    Margulies, R. U., Lewicky-Gaupp, C., Fenner, D. E., McGuire, E. J., Clemens, J. Q., & Delancey, J. O. (2008). Complications requiring reoperation following vaginal mesh kit procedures for prolapse. American Journal of Obstetrics & Gynecology, 199(6), 678.e1–678.e4.CrossRefGoogle Scholar
  60. 60.
    Matthews, B. D., Pratt, B. L., Pollinger, H. S., Backus, C. L., Kercher, K. W., Sing, R. F., et al. (2003). Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. Journal of Surgical Research, 114(2), 126–132.CrossRefGoogle Scholar
  61. 61.
    Mohamed, M., Elmoghrabi, A., Shepard W. R., & McCann, M. (2016) Delayed onset seroma formation ‘opting out’ at 5 years after ventral incisional hernia repair. BMJ Case Reports 2016.
  62. 62.
    Morris-Stiff, G. J., & Hughes, L. E. (1998). The outcomes of nonabsorbable mesh placed within the abdominal cavity: literature review and clinical experience. Journal of the American College of Surgeons, 186(3), 352–367.CrossRefGoogle Scholar
  63. 63.
    Mühl, T., Binnebösel, M., Klinge, U., & Goedderz, T. (2008). New objective measurement to characterize the porosity of textile implants. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 84(1), 176–183.CrossRefGoogle Scholar
  64. 64.
    Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.CrossRefGoogle Scholar
  65. 65.
    Orenstein, S. B., Saberski, E. R., Kreutzer, D. L., & Novitsky, Y. W. (2012). Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. Journal of Surgical Research, 176(2), 423–429.CrossRefGoogle Scholar
  66. 66.
    Otto, J., Kaldenhoff, E., Kirschner-Hermanns, R., Mühl, T., & Klinge, U. (2014). Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. Journal of Biomedical Materials Research Part A, 102(4), 1079–1084.CrossRefGoogle Scholar
  67. 67.
    Pans, A., Albert, A., Lapière, C. M., & Nusgens, B. (2001). Biochemical study of collagen in adult groin hernias. Journal of Surgical Research, 95(2), 107–113.CrossRefGoogle Scholar
  68. 68.
    Patel, H., Ostergard, D. R., & Sternschuss, G. (2012). Polypropylene mesh and the host response. International Urogynecology Journal, 23(6), 669–679.CrossRefGoogle Scholar
  69. 69.
    Poobalan, A. S., Bruce, J., Smith, W. C., King, P. M., Krukowski, Z. H., & Chambers, W. A. (2003). A review of chronic pain after inguinal herniorrhaphy. Clinical Journal of Pain, 19(1), 48–54.CrossRefGoogle Scholar
  70. 70.
    Post, S., Weiss, B., Willer, M., Neufang, T., & Lorenz, D. (2004). Randomized clinical trial of lightweight composite mesh for Lichtenstein inguinal hernia repair. British Journal of Surgery, 91(1), 44–48.CrossRefGoogle Scholar
  71. 71.
    Ratner, B. D., Northup, S. J., & Anderson, J. M. (2004). Biological testing of biomaterials. In B. D. Ratner, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials science: an introduction to materials in medicine (2nd ed., pp. 355–360). San Diego: Elsevier.Google Scholar
  72. 72.
    Rutkow, I. M. (2003). Demographic and socioeconomic aspects of hernia repair in the United States in 2003. Surgical Clinics of North America, 83(5), 1045–1051, V–VI.CrossRefGoogle Scholar
  73. 73.
    Saad, B., Abu-Hijleh, G., & Suter, U. W. (2003). Polymer biocompatibility assessment by cell culture techniques. In R. Arshady (Ed.), Introduction to polymeric biomaterials: the polymeric biomaterials series (pp. 263–299). London: Citus Books.Google Scholar
  74. 74.
    Salamone, G., Licari, L., Agrusa, A., Romano, G., Cocorullo, G., & Gulotta, G. (2015). Deep seroma after incisional hernia repair. Case reports and review of the literature. Annali Italiani di Chirurgia, 12:86 (ePub).Google Scholar
  75. 75.
    Scheidbach, H., Tamme, C., Tannapfel, A., Lippert, H., & Köckerling, F. (2004). In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs. Surgical Endoscopy, 18(2), 211–220.CrossRefGoogle Scholar
  76. 76.
    Schumpelick, V., Conze, J., & Klinge, U. (1996). Preperitoneal meshplasty in incisional hernia repair. A comparative retrospective study of 272 repaired incisional hernias. Chirurg, 67(10), 1028–1035.CrossRefGoogle Scholar
  77. 77.
    Scott, P. D., Harold, K. L., Craft, R. O., & Roberts, C. C. (2008). Postoperative seroma deep to mesh after laparoscopic ventral hernia repair: computed tomography appearance and implications for treatment. Radiology Case Reports, 3(1), art. 10.128.CrossRefGoogle Scholar
  78. 78.
    Shoshan, S. (1981). Wound healing. International Review of Connective Tissue Research, 9, 1–26.Google Scholar
  79. 79.
    Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958.CrossRefGoogle Scholar
  80. 80.
    Staat, M., Trenz, E., Lohmann, P., Frotscher, R., Klinge, U., Tabaza, R., et al. (2012). New measurements to compare soft tissue anchoring systems in pelvic floor surgery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100(4), 924–933.CrossRefGoogle Scholar
  81. 81.
    Susmallian, S., Gewurtz, G., Ezri, T., & Charuzi, I. (2001). Seroma after laparoscopic repair of hernia with PTFE patch: is it really a complication? Hernia, 5(3), 139–141.CrossRefGoogle Scholar
  82. 82.
    Usher, F. C., & Gannon, J. P. (1959). Marlex mesh, a new plastic mesh for replacing tissue defects. I. Experimental studies. AMA Archives of Surgery, 78(1), 131–137.CrossRefGoogle Scholar
  83. 83.
    Usher, F. C., Ochsner, J., & Jr, Tuttle L. L. (1958). Use of Marlex mesh in the repair of incisional hernias. American Surgeon, 24(12), 969–974.Google Scholar
  84. 84.
    van’t Riet, M., de Vos van Steenwijk, P. J., Bonthuis, F., Marquet, R. L., Steyerberg, E. W., Jeekel, J., et al. (2003). Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. Annals of Surgery, 237(1), 123–128.CrossRefGoogle Scholar
  85. 85.
    Welty, G., Klinge, U., Klosterhalfen, B., Kasperk, R., & Schumpelick, V. (2001). Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia, 5(3), 142–147.CrossRefGoogle Scholar
  86. 86.
    Williams, G. T., & Williams, W. J. (1983). Granulomatous inflammation-a review. Journal of Clinical Pathology, 36(7), 723–733.CrossRefGoogle Scholar
  87. 87.
    Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Engineering, 11(1–2), 1–18.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Biomechanics LaboratoryInstitute for Bioengineering, University of Applied Sciences AachenJülichGermany

Personalised recommendations