Can We Rebuild the Cell Membrane?

  • Samar Damiati


Biomimetic artificial membranes are convenient, versatile models that borrow from the principles of biological systems and mimic the physiological characteristics of natural cell membranes by exploiting simple nanostructured materials. To construct an artificial membrane, it is important to first understand the biology of natural membranes and to recognize the primary differences between the cellular membranes of different organisms. The creation of biomimetic membranes can be achieved with a minimal number of living or non-living components while sufficiently retaining the basic properties of cellular life. The successful development of biomimetic membranes promotes an understanding of basic cellular functions and assists in the generation of semi-natural systems with new functions, the fabrication of selective and sensitive biosensing platforms, and the development of new biotechnology in different fields ranging from medicine to the environment. This chapter presents the most common model biomimetic membranes that are currently available and their applications, as well as their preparation methods, general investigation techniques, properties, and limitations.


Biological membranes Biomimetic model membranes Supported lipid membranes Lipid vesicles Membrane proteins Biosensing platforms Nanostructured materials 





Atomic Force Microscopy


Black Lipid Membrane




Electrochemical Impedance Spectroscopy


Giant Unilamellar Vesicles


Hybrid Bilayer Lipid Membrane


High-Density Lipoprotein






Lipoteichoic Acids


Large Unilamellar Vesicles


Multilamellar Lipid Vesicles


Membrane Scaffolding Protein












Quartz Crystal Microbalance with Dissipation monitoring




Self-Assembling Monolayer


Supported Lipid Bilayer Membrane




S-layer-supported Lipid Bilayer Membrane


Small Unilamellar Vesicles


Tethered Bilayer Lipid Membrane


  1. 1.
    Agrawal, A., Harde, H., Thanki, K., & Jain, S. (2014). Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules, 5(1), 350–360.CrossRefGoogle Scholar
  2. 2.
    Ajo-Franklin, C., Kam, L., & Boxer, S. (2001). High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast. Proceedings of National Academy of Sciences, 98(24), 13643–13648.CrossRefGoogle Scholar
  3. 3.
    Albert, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., et al. (2014). Molecular biology of the cell (6th ed.). New York: Garland Science.Google Scholar
  4. 4.
    Alhakamy, N., Kaviratna, A., Berkland, C., & Dhar, P. (2013). Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides. Langmuir, 29(49), 15336–15349.CrossRefGoogle Scholar
  5. 5.
    Andersson, J., & Köper, I. (2016). Tethered and polymer supported bilayer lipid membranes: Structure and function. Membranes, 6(2), 30.CrossRefGoogle Scholar
  6. 6.
    Atanasov, V., Knorr, N., Duran, R. S., Ingebrandt, S., Offenhäusser, A., Knoll, W., et al. (2005). Membrane on a chip: A functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophysical Journal, 89(3), 1780–1788.CrossRefGoogle Scholar
  7. 7.
    Bangham, A., Standish, M., & Watkins, J. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 13, 238–252.CrossRefGoogle Scholar
  8. 8.
    Batzri, S., & Korn, E. (1973). Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta, 298, 1015–1019.CrossRefGoogle Scholar
  9. 9.
    Bayburt, T., & Sligar, S. (2003). Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Science, 12, 2476–2481.CrossRefGoogle Scholar
  10. 10.
    Bayburt, T. H., & Sligar, S. G. (2010). Membrane protein assembly into nanodiscs. FEBS Letters, 584, 1721–1727.CrossRefGoogle Scholar
  11. 11.
    Becucci, L., & Guidelli, R. (2014). Mercury-supported biomimetic membranes for the investigation of antimicrobial peptides. Pharmaceuticals (Basel), 7(2), 136–168.CrossRefGoogle Scholar
  12. 12.
    Bogdanov, M., Dowhan, W., & Vitrac, H. (2014). Lipids and topological rules governing membrane protein assembly. Biochimica et Biophysica Acta, 1843(8), 1475–1488.CrossRefGoogle Scholar
  13. 13.
    Brezesinski, G., & Möhwald, H. (2003). Langmuir monolayers to study interactions at model membrane surfaces. Advances in Colloid and Interface Science, 100–102, 563–584.CrossRefGoogle Scholar
  14. 14.
    Castellana, E., & Cremer, P. (2006). Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 61(10), 429–444.CrossRefGoogle Scholar
  15. 15.
    Chen, T., & Reinhard, B. M. (2013). Characterizing the lateral friction of nanoparticles on on-chip integrated black lipid membranes. Small (Weinheim an der Bergstrasse, Germany), 9, 876–884.CrossRefGoogle Scholar
  16. 16.
    Costa, A., & Burgess, X. (2012). Langmuir balance investigation of speroxide dimutase interactions with mixed-lipid monolayers. Langmuir, 28, 10050–10056.CrossRefGoogle Scholar
  17. 17.
    Damiati, S., Zayni, S., Schrems, A., Kiene, E., Sleytr, U.B., Chopineau, J., et al. (2015a). Inspired and stabilized by nature: Ribosomal synthesis of the human voltage gated Ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomaterials Science, 3, 1406–1413.CrossRefGoogle Scholar
  18. 18.
    Damiati, S., Schrems, A., Sinner, E., Sleytr, U.B. & Schuster, B. (2015b). Probing peptide and protein insertion in a biomimetic S-layer supported lipid membranes platform. International Journal of Molecular Sciences, 16, 2824–2838.CrossRefGoogle Scholar
  19. 19.
    Denisov, I., & Sligar, S. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nature Structural and Molecular Biology, 23, 481–486.CrossRefGoogle Scholar
  20. 20.
    Denisov, I. G., Grinkova, Y. V., Lazarides, A. A., & Sligar, S. G. (2004). Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. Journal of the American Chemical Society, 126, 3477–3487.CrossRefGoogle Scholar
  21. 21.
    Deverall, M. A., Gindl, E., Sinner, E. K., Besir, H., Ruehe, J., Saxton, M. J., et al. (2005). Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophysical Journal, 88, 1875–1886.CrossRefGoogle Scholar
  22. 22.
    Eeman, M., & Deleu, M. (2010). From biological membranes to biomimetic model membranes. Biotechnologie, Agronomie, Societe et Environnement, 14(4), 719–736.Google Scholar
  23. 23.
    Ellis, R. (2005). Chaperone function: The orthodox view. In B. Henderson & A. G. Pockley (Eds.), Molecular chaperones and cell signalling (pp. 3–21). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. 24.
    Engelmann, D. (2005). Membranes are more mosaic than fluid. Nature, 438, 578–580.CrossRefGoogle Scholar
  25. 25.
    Epand, R., & Epand, R. (2009). Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica et Biophysica Acta, 1788, 289–294.CrossRefGoogle Scholar
  26. 26.
    Fedyukina, D. V., Jennaro, T. S., & Cavagnero, S. (2014). Charge segregation and low hydrophobicity are key features of ribosomal proteins from different organisms. Journal of Biological Chemistry, 289(10), 6740–6750.CrossRefGoogle Scholar
  27. 27.
    Girard-Ergot, A. P., & Blum, L. C. (2007). Langmuir-Blodgett technique for synthesis of biomimetic lipid membranes. In D. K. Martin (Ed.), Nanobiotechnology of biomimetic membranes (pp. 23–74). New York: Springer.CrossRefGoogle Scholar
  28. 28.
    Glazier, S., Vanderah, D., Plant, A., Bayley, H., Valincius, G., & Kasianowicz, J. (2000). Reconstitution of the pore-forming toxin α-hemolysin in phospholipid/18-octadecyl-1-thiahexa (ethylene oxide) and phospholipid/n-octadecanethiol supported bilayer membranes. Langmuir, 16(26), 10428–10435.CrossRefGoogle Scholar
  29. 29.
    Goreham, R. V., Thompson, V. C., Samura, Y., Gibson, C. T., Shapter, J. G., & Köper, I. (2015). Interaction of silver nanoparticles with tethered bilayer lipid membranes. Langmuir, 31(21), 5868–5874.CrossRefGoogle Scholar
  30. 30.
    Imura, T., Gotoh, T., Otaka, K., Yoda, S., Takebayashi, Y., Yokoyama, S., et al. (2003). Control of physicochemical properties of liposomes using a supercritical reverse phase evaporation method. Langmuir, 19(6), 2021–2025.CrossRefGoogle Scholar
  31. 31.
    Ingo, K. (2007). Insulating tethered bilayer lipid membranes to study membrane proteins. Molecular BioSystems, 3, 651–657.CrossRefGoogle Scholar
  32. 32.
    Jadhav, S. R., Sui, D., Garavito, R. M., & Worden, R. M. (2008). Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. Journal of Colloid and Interface Science, 322(2), 465–472.CrossRefGoogle Scholar
  33. 33.
    Jelinek, R., & Silbert, L. (2009). Biomimetic approaches for studying membrane processes. Molecular BioSystems, 5, 811–818.CrossRefGoogle Scholar
  34. 34.
    Kamps, J. A. A. M., Scherphof, G. L., Sullivan, S., Gong, Y., & Hughes, J. (2003). In V. P. Torchilin & V. Weissig (Eds.), Liposomes, a practical approach (2nd ed., pp. 267–301). New York: Oxford University Press.Google Scholar
  35. 35.
    Khan, M. S., Dosoky, N. S., Berdiev, B. K., & Williams, J. (2016). Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 45, 843.CrossRefGoogle Scholar
  36. 36.
    Kiessling, V., & Tamm, L. (2003). Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and snare proteins. Biophysical Journal, 84, 408–418.CrossRefGoogle Scholar
  37. 37.
    Kroon, A., Rijken, P., & De Smet, C. (2013). Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Progress in Lipid Research, 52(4), 374–394.CrossRefGoogle Scholar
  38. 38.
    Le Brun, A., Clifton, L., Holt, S., Holden, P., & Lakey, J. (2016). Deuterium labeling strategies for creating contrast in structure-function studies of model bacterial outer membranes using neutron reflectometry. Methods in Enzymology, 566, 231–252.CrossRefGoogle Scholar
  39. 39.
    Lee, S. K., Cascão-Pereira, L. G., Sala, R. F., Holmes, S. P., Ryan, K. J., & Becker, T. (2005). Ion channel switch array: A biosensor for detecting multiple pathogens. Industrial Biotechnology, 1, 26–31.CrossRefGoogle Scholar
  40. 40.
    Liu, C., & Faller, R. (2012). Conformational, dynamical and tensional study of tethered bilayer lipid membranes in coarse-grained molecular simulations. Langmuir, 28(45), 15907–15915.CrossRefGoogle Scholar
  41. 41.
    Maget-Dana, R. (1999). The monolayer technique: A potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochimica et Biophysica Acta, 1462, 109–140.CrossRefGoogle Scholar
  42. 42.
    McGillivray, D. J., Valincius, G., Heinrich, F., Robertson, J. W., Vanderah, D. J., Febo-Ayala, W., et al. (2009). Structure of functional staphylococcus aureus alpha-hemolysin channels in tethered bilayer lipid membranes. Biophysical Journal, 96(4), 1547–1553.CrossRefGoogle Scholar
  43. 43.
    Merzlyakov, M., Li, E., Gitsov, I., & Hristova, K. (2006). Surface-supported bilayers with transmembrane proteins: Role of the polymer cushion revisited. Langmuir, 22(24), 10145–10151.CrossRefGoogle Scholar
  44. 44.
    Montal, M., & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proceedings of the National Academy of Sciences of the United States of America, 69(12), 3561–3566.CrossRefGoogle Scholar
  45. 45.
    Mueller, P., Rudin, D., Tien, H., & Wscott, W. (1962). Reconstitution of excitable cell membrane structure in vitro. Circulation, 26, 1167–1170.CrossRefGoogle Scholar
  46. 46.
    Nguyen, T., Tang, Q., Doan, D., & Dang, D. (2016). Micro and nano liposome vesicles containing curcumin for a drug delivery system. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3), 035003.Google Scholar
  47. 47.
    Osman, C., Voelker, D. R., & Langer, T. (2011). Making heads or tails of phospholipids in mitochondria. Journal of Cell Biology, 192(1), 7–16.CrossRefGoogle Scholar
  48. 48.
    Petrache, A., Machin, D., Williamson, D., Webb, M., & Beales, P. (2016). Sortase-mediated labelling of lipid nanodiscs for cellular tracing. Molecular BioSystems, 12, 1760–1763.CrossRefGoogle Scholar
  49. 49.
    Purrucker, P., Förtig, A., Jordan, A., & Tanaka, M. (2004). Supported membranes with well-defined polymer tethers—Incorporation of cell receptors. Chem PhysChem, 5, 327–335.Google Scholar
  50. 50.
    Rebaud, S., Maniti, O., & Girard-Egrot, A. P. (2014). Tethered bilayer lipid membranes (tBLMs): Interest and applications for biological membrane investigations. Biochimie, 107, 135–142.CrossRefGoogle Scholar
  51. 51.
    Reimhult, E., Zach, A., Höök, F., & Kasemo, B. (2006). A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir, 22, 3313–3319.CrossRefGoogle Scholar
  52. 52.
    Ries, R., Choi, H., Blunck, R., Bezanilla, F., & Heath, J. (2004). Black lipid membranes: Visualizing the structure, dynamics, and substrate dependence of membranes. The Journal of Physical Chemistry B, 108, 16040–16049.CrossRefGoogle Scholar
  53. 53.
    Roberts, M. A., Cranenburgh, R. M., Stevens, M. P., & Oyston, P. C. F. (2013). Synthetic biology: Biology by design. Microbiology, 159(7), 1219–1220.CrossRefGoogle Scholar
  54. 54.
    Roskamp, R. F., Vockenroth, I. K., Eisenmenger, N., Braunagel, J., & Köper, I. (2008). Functional tethered bilayer lipid membranes on aluminum oxide. ChemPhysChem, 9(13), 1920–1924.CrossRefGoogle Scholar
  55. 55.
    Rossetti, F. F., Bally, M., Michel, R., Textor, M., & Reviakine, I. (2005). Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: Formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir, 21, 6443.CrossRefGoogle Scholar
  56. 56.
    Ryan, S. R., Hyeon, C., Rikard, B., Francisco, B., & James, R. H. (2004). Black lipid membranes: Visualizing the structure, dynamics, and substrate dependence of membranes. The Journal of Physical Chemistry B, 108, 16040–16049.CrossRefGoogle Scholar
  57. 57.
    Sackmann, E. (1996). Supported membranes: Scientific and practical applications. Science, 271, 43–48.CrossRefGoogle Scholar
  58. 58.
    Sackmann, E., & Tanaka, M. (2000). Supported membranes on soft polymer cushions: Fabrication, characterization and applications. Trends in Biotechnology, 18, 58–64.CrossRefGoogle Scholar
  59. 59.
    Sáenz, J., Grosser, D., Bradley, A., Lagny, T., Lavrynenko, O., Broda, M., et al. (2015). Hopanoids as functional analogues of cholesterol in bacterial membranes. Proceedings of the National Academy of Sciences, 112(38), 11971–11976.CrossRefGoogle Scholar
  60. 60.
    Schiller, S. M., Naumann, R., Lovejoy, K., Kunz, H., & Knoll, W. (2003). Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. Angewandte Chemie International Edition in English, 42(2), 208–211.CrossRefGoogle Scholar
  61. 61.
    Schrems, A., Larisch, V. D., Stanetty, C., Dutter, K., Damiati, S., Sleytr, U. B., et al. (2011). Liposome fusion on proteinaceous S-layer lattices triggered via β-diketone ligand–europium (III) complex formation. Soft Matter, 7, 5514–5518.CrossRefGoogle Scholar
  62. 62.
    Schuster, B., & Sleytr, U. B. (2002). Single channel recordings of α-hemolysin reconstituted in S-layer stabilized lipid bilayers. Bioelectrochemistry, 55, 5–7.CrossRefGoogle Scholar
  63. 63.
    Schuster, B., Pum, D., Sara, M., Braha, O., Bayley, H., & Sleytr, U. B. (2001). S-layer ultrafiltration membranes: A new support for stabilizing functionalized lipid membranes. Langmuir, 17, 499–503.CrossRefGoogle Scholar
  64. 64.
    Seddon, A., Curnow, P., & Booth, P. (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1666(1–2), 105–117.CrossRefGoogle Scholar
  65. 65.
    Sharma, G., Sharma, A. R., Nam, J. S., Doss, G. P. C., Lee, S. S., & Chakraborty, C. (2015). Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. Journal of Nanobiotechnology, 13, 74.CrossRefGoogle Scholar
  66. 66.
    Siegel, A. P., Hussain, N. F., Johnson, M., & Naumann, C. A. (2012). Metric between buckling structures and elastic properties in physisorbed polymertethered lipid monolayers. Soft Matter, 8, 5873–5880.CrossRefGoogle Scholar
  67. 67.
    Sinner, E. K., Reuning, U., Kok, F. N., Sacca, B., Moroder, L., Knoll, W., et al. (2004). Incorporation of integrins into artificial planar lipid membranes: Characterization by plasmon-enhanced fluorescence spectroscopy. Analytical Biochemistry, 333(2), 216–224.CrossRefGoogle Scholar
  68. 68.
    Sleytr, U. B., Schuster, B., Egelseer, E. M., & Pum, D. (2014). S-layers: Principles and applications. FEMS Microbiology Reviews, 38(5), 823–864.CrossRefGoogle Scholar
  69. 69.
    Sprong, H., Sluijs, P., & Meer, G. (2001). How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology, 2, 504–513.CrossRefGoogle Scholar
  70. 70.
    Su, Z., Jiang, Y., Velázquez-Manzanares, M., Leitch, J. J., Kycia, A., & Lipkowski, J. (2013). Electrochemical and PM-IRRAS studies of floating lipid bilayers assembled at the Au (111) electrode pre-modified with a hydrophilic monolayer. Journal of Electroanalytical Chemistry, 688, 76–85.CrossRefGoogle Scholar
  71. 71.
    Szoka, F., & Papahadjopoulos, D. (1978). Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences of the United States of America, 75, 4194–4198.CrossRefGoogle Scholar
  72. 72.
    Tanaka, M. (2006). Polymer-supported membranes: Physical models of cell surfaces. MRS Bulletin, 31, 513–520.CrossRefGoogle Scholar
  73. 73.
    Tanaka, M., & Sackmann, E. (2005). Polymer-supported membranes as models of the cell surface. Nature, 437, 656–663.CrossRefGoogle Scholar
  74. 74.
    Torchilin, V. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4, 145–160.CrossRefGoogle Scholar
  75. 75.
    Van Meer, G., Voelker, D., & Feigenson, G. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews Drug Discovery, 9(2), 112–124.Google Scholar
  76. 76.
    Wagner, M. L., & Tamm, L. K. (2000). Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophysical Journal, 79, 1400–1414.CrossRefGoogle Scholar
  77. 77.
    Walde, P., Cosentino, K., Engel, H., & Stano, P. (2010). Giant vesicles: Preparations and applications. ChemBioChem, 11, 848–865.CrossRefGoogle Scholar
  78. 78.
    Wu, W., & Jiang, X. (2016). Polymeric micelles for drug delivery. In Y. Zhao & Y. Shen (Eds.), Biomedical nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
  79. 79.
    Yu, X., Trase, I., Ren, M., Duval, K., Guo, X., & Chen, Z. (2016). Design of nanoparticle-based carriers for targeted drug delivery. Journal of Nanomaterials, 2016, 1–15.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceKing Abdulaziz University (KAU)JeddahSaudi Arabia
  2. 2.Institute for Synthetic Bioarchitectures, Department of NanobiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria

Personalised recommendations