Skip to main content

Abstract

Biomimetic artificial membranes are convenient, versatile models that borrow from the principles of biological systems and mimic the physiological characteristics of natural cell membranes by exploiting simple nanostructured materials. To construct an artificial membrane, it is important to first understand the biology of natural membranes and to recognize the primary differences between the cellular membranes of different organisms. The creation of biomimetic membranes can be achieved with a minimal number of living or non-living components while sufficiently retaining the basic properties of cellular life. The successful development of biomimetic membranes promotes an understanding of basic cellular functions and assists in the generation of semi-natural systems with new functions, the fabrication of selective and sensitive biosensing platforms, and the development of new biotechnology in different fields ranging from medicine to the environment. This chapter presents the most common model biomimetic membranes that are currently available and their applications, as well as their preparation methods, general investigation techniques, properties, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

AFM:

Atomic Force Microscopy

BLM:

Black Lipid Membrane

CL:

Cardiolipin

EIS:

Electrochemical Impedance Spectroscopy

GUVs:

Giant Unilamellar Vesicles

hBLM:

Hybrid Bilayer Lipid Membrane

HDL:

High-Density Lipoprotein

LB:

Langmuir-Blodgett

LS:

Langmuir-Schaefer

LTA:

Lipoteichoic Acids

LUVs:

Large Unilamellar Vesicles

MLVs:

Multilamellar Lipid Vesicles

MSP:

Membrane Scaffolding Protein

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

QCM-D:

Quartz Crystal Microbalance with Dissipation monitoring

S-layer:

Surface-layer

SAM:

Self-Assembling Monolayer

sLBM:

Supported Lipid Bilayer Membrane

SM:

Sphingomyelin

SsLBM:

S-layer-supported Lipid Bilayer Membrane

SUVs:

Small Unilamellar Vesicles

tBLM:

Tethered Bilayer Lipid Membrane

References

  1. Agrawal, A., Harde, H., Thanki, K., & Jain, S. (2014). Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules, 5(1), 350–360.

    Article  Google Scholar 

  2. Ajo-Franklin, C., Kam, L., & Boxer, S. (2001). High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast. Proceedings of National Academy of Sciences, 98(24), 13643–13648.

    Article  Google Scholar 

  3. Albert, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., et al. (2014). Molecular biology of the cell (6th ed.). New York: Garland Science.

    Google Scholar 

  4. Alhakamy, N., Kaviratna, A., Berkland, C., & Dhar, P. (2013). Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides. Langmuir, 29(49), 15336–15349.

    Article  Google Scholar 

  5. Andersson, J., & Köper, I. (2016). Tethered and polymer supported bilayer lipid membranes: Structure and function. Membranes, 6(2), 30.

    Article  Google Scholar 

  6. Atanasov, V., Knorr, N., Duran, R. S., Ingebrandt, S., Offenhäusser, A., Knoll, W., et al. (2005). Membrane on a chip: A functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophysical Journal, 89(3), 1780–1788.

    Article  Google Scholar 

  7. Bangham, A., Standish, M., & Watkins, J. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 13, 238–252.

    Article  Google Scholar 

  8. Batzri, S., & Korn, E. (1973). Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta, 298, 1015–1019.

    Article  Google Scholar 

  9. Bayburt, T., & Sligar, S. (2003). Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Science, 12, 2476–2481.

    Article  Google Scholar 

  10. Bayburt, T. H., & Sligar, S. G. (2010). Membrane protein assembly into nanodiscs. FEBS Letters, 584, 1721–1727.

    Article  Google Scholar 

  11. Becucci, L., & Guidelli, R. (2014). Mercury-supported biomimetic membranes for the investigation of antimicrobial peptides. Pharmaceuticals (Basel), 7(2), 136–168.

    Article  Google Scholar 

  12. Bogdanov, M., Dowhan, W., & Vitrac, H. (2014). Lipids and topological rules governing membrane protein assembly. Biochimica et Biophysica Acta, 1843(8), 1475–1488.

    Article  Google Scholar 

  13. Brezesinski, G., & Möhwald, H. (2003). Langmuir monolayers to study interactions at model membrane surfaces. Advances in Colloid and Interface Science, 100–102, 563–584.

    Article  Google Scholar 

  14. Castellana, E., & Cremer, P. (2006). Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 61(10), 429–444.

    Article  Google Scholar 

  15. Chen, T., & Reinhard, B. M. (2013). Characterizing the lateral friction of nanoparticles on on-chip integrated black lipid membranes. Small (Weinheim an der Bergstrasse, Germany), 9, 876–884.

    Article  Google Scholar 

  16. Costa, A., & Burgess, X. (2012). Langmuir balance investigation of speroxide dimutase interactions with mixed-lipid monolayers. Langmuir, 28, 10050–10056.

    Article  Google Scholar 

  17. Damiati, S., Zayni, S., Schrems, A., Kiene, E., Sleytr, U.B., Chopineau, J., et al. (2015a). Inspired and stabilized by nature: Ribosomal synthesis of the human voltage gated Ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomaterials Science, 3, 1406–1413.

    Article  Google Scholar 

  18. Damiati, S., Schrems, A., Sinner, E., Sleytr, U.B. & Schuster, B. (2015b). Probing peptide and protein insertion in a biomimetic S-layer supported lipid membranes platform. International Journal of Molecular Sciences, 16, 2824–2838.

    Article  Google Scholar 

  19. Denisov, I., & Sligar, S. (2016). Nanodiscs for structural and functional studies of membrane proteins. Nature Structural and Molecular Biology, 23, 481–486.

    Article  Google Scholar 

  20. Denisov, I. G., Grinkova, Y. V., Lazarides, A. A., & Sligar, S. G. (2004). Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. Journal of the American Chemical Society, 126, 3477–3487.

    Article  Google Scholar 

  21. Deverall, M. A., Gindl, E., Sinner, E. K., Besir, H., Ruehe, J., Saxton, M. J., et al. (2005). Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophysical Journal, 88, 1875–1886.

    Article  Google Scholar 

  22. Eeman, M., & Deleu, M. (2010). From biological membranes to biomimetic model membranes. Biotechnologie, Agronomie, Societe et Environnement, 14(4), 719–736.

    Google Scholar 

  23. Ellis, R. (2005). Chaperone function: The orthodox view. In B. Henderson & A. G. Pockley (Eds.), Molecular chaperones and cell signalling (pp. 3–21). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  24. Engelmann, D. (2005). Membranes are more mosaic than fluid. Nature, 438, 578–580.

    Article  Google Scholar 

  25. Epand, R., & Epand, R. (2009). Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica et Biophysica Acta, 1788, 289–294.

    Article  Google Scholar 

  26. Fedyukina, D. V., Jennaro, T. S., & Cavagnero, S. (2014). Charge segregation and low hydrophobicity are key features of ribosomal proteins from different organisms. Journal of Biological Chemistry, 289(10), 6740–6750.

    Article  Google Scholar 

  27. Girard-Ergot, A. P., & Blum, L. C. (2007). Langmuir-Blodgett technique for synthesis of biomimetic lipid membranes. In D. K. Martin (Ed.), Nanobiotechnology of biomimetic membranes (pp. 23–74). New York: Springer.

    Chapter  Google Scholar 

  28. Glazier, S., Vanderah, D., Plant, A., Bayley, H., Valincius, G., & Kasianowicz, J. (2000). Reconstitution of the pore-forming toxin α-hemolysin in phospholipid/18-octadecyl-1-thiahexa (ethylene oxide) and phospholipid/n-octadecanethiol supported bilayer membranes. Langmuir, 16(26), 10428–10435.

    Article  Google Scholar 

  29. Goreham, R. V., Thompson, V. C., Samura, Y., Gibson, C. T., Shapter, J. G., & Köper, I. (2015). Interaction of silver nanoparticles with tethered bilayer lipid membranes. Langmuir, 31(21), 5868–5874.

    Article  Google Scholar 

  30. Imura, T., Gotoh, T., Otaka, K., Yoda, S., Takebayashi, Y., Yokoyama, S., et al. (2003). Control of physicochemical properties of liposomes using a supercritical reverse phase evaporation method. Langmuir, 19(6), 2021–2025.

    Article  Google Scholar 

  31. Ingo, K. (2007). Insulating tethered bilayer lipid membranes to study membrane proteins. Molecular BioSystems, 3, 651–657.

    Article  Google Scholar 

  32. Jadhav, S. R., Sui, D., Garavito, R. M., & Worden, R. M. (2008). Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. Journal of Colloid and Interface Science, 322(2), 465–472.

    Article  Google Scholar 

  33. Jelinek, R., & Silbert, L. (2009). Biomimetic approaches for studying membrane processes. Molecular BioSystems, 5, 811–818.

    Article  Google Scholar 

  34. Kamps, J. A. A. M., Scherphof, G. L., Sullivan, S., Gong, Y., & Hughes, J. (2003). In V. P. Torchilin & V. Weissig (Eds.), Liposomes, a practical approach (2nd ed., pp. 267–301). New York: Oxford University Press.

    Google Scholar 

  35. Khan, M. S., Dosoky, N. S., Berdiev, B. K., & Williams, J. (2016). Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore. European Biophysics Journal, 45, 843.

    Article  Google Scholar 

  36. Kiessling, V., & Tamm, L. (2003). Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: Polymer supports and snare proteins. Biophysical Journal, 84, 408–418.

    Article  Google Scholar 

  37. Kroon, A., Rijken, P., & De Smet, C. (2013). Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Progress in Lipid Research, 52(4), 374–394.

    Article  Google Scholar 

  38. Le Brun, A., Clifton, L., Holt, S., Holden, P., & Lakey, J. (2016). Deuterium labeling strategies for creating contrast in structure-function studies of model bacterial outer membranes using neutron reflectometry. Methods in Enzymology, 566, 231–252.

    Article  Google Scholar 

  39. Lee, S. K., Cascão-Pereira, L. G., Sala, R. F., Holmes, S. P., Ryan, K. J., & Becker, T. (2005). Ion channel switch array: A biosensor for detecting multiple pathogens. Industrial Biotechnology, 1, 26–31.

    Article  Google Scholar 

  40. Liu, C., & Faller, R. (2012). Conformational, dynamical and tensional study of tethered bilayer lipid membranes in coarse-grained molecular simulations. Langmuir, 28(45), 15907–15915.

    Article  Google Scholar 

  41. Maget-Dana, R. (1999). The monolayer technique: A potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochimica et Biophysica Acta, 1462, 109–140.

    Article  Google Scholar 

  42. McGillivray, D. J., Valincius, G., Heinrich, F., Robertson, J. W., Vanderah, D. J., Febo-Ayala, W., et al. (2009). Structure of functional staphylococcus aureus alpha-hemolysin channels in tethered bilayer lipid membranes. Biophysical Journal, 96(4), 1547–1553.

    Article  Google Scholar 

  43. Merzlyakov, M., Li, E., Gitsov, I., & Hristova, K. (2006). Surface-supported bilayers with transmembrane proteins: Role of the polymer cushion revisited. Langmuir, 22(24), 10145–10151.

    Article  Google Scholar 

  44. Montal, M., & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proceedings of the National Academy of Sciences of the United States of America, 69(12), 3561–3566.

    Article  Google Scholar 

  45. Mueller, P., Rudin, D., Tien, H., & Wscott, W. (1962). Reconstitution of excitable cell membrane structure in vitro. Circulation, 26, 1167–1170.

    Article  Google Scholar 

  46. Nguyen, T., Tang, Q., Doan, D., & Dang, D. (2016). Micro and nano liposome vesicles containing curcumin for a drug delivery system. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3), 035003.

    Google Scholar 

  47. Osman, C., Voelker, D. R., & Langer, T. (2011). Making heads or tails of phospholipids in mitochondria. Journal of Cell Biology, 192(1), 7–16.

    Article  Google Scholar 

  48. Petrache, A., Machin, D., Williamson, D., Webb, M., & Beales, P. (2016). Sortase-mediated labelling of lipid nanodiscs for cellular tracing. Molecular BioSystems, 12, 1760–1763.

    Article  Google Scholar 

  49. Purrucker, P., Förtig, A., Jordan, A., & Tanaka, M. (2004). Supported membranes with well-defined polymer tethers—Incorporation of cell receptors. Chem PhysChem, 5, 327–335.

    Google Scholar 

  50. Rebaud, S., Maniti, O., & Girard-Egrot, A. P. (2014). Tethered bilayer lipid membranes (tBLMs): Interest and applications for biological membrane investigations. Biochimie, 107, 135–142.

    Article  Google Scholar 

  51. Reimhult, E., Zach, A., Höök, F., & Kasemo, B. (2006). A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir, 22, 3313–3319.

    Article  Google Scholar 

  52. Ries, R., Choi, H., Blunck, R., Bezanilla, F., & Heath, J. (2004). Black lipid membranes: Visualizing the structure, dynamics, and substrate dependence of membranes. The Journal of Physical Chemistry B, 108, 16040–16049.

    Article  Google Scholar 

  53. Roberts, M. A., Cranenburgh, R. M., Stevens, M. P., & Oyston, P. C. F. (2013). Synthetic biology: Biology by design. Microbiology, 159(7), 1219–1220.

    Article  Google Scholar 

  54. Roskamp, R. F., Vockenroth, I. K., Eisenmenger, N., Braunagel, J., & Köper, I. (2008). Functional tethered bilayer lipid membranes on aluminum oxide. ChemPhysChem, 9(13), 1920–1924.

    Article  Google Scholar 

  55. Rossetti, F. F., Bally, M., Michel, R., Textor, M., & Reviakine, I. (2005). Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: Formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir, 21, 6443.

    Article  Google Scholar 

  56. Ryan, S. R., Hyeon, C., Rikard, B., Francisco, B., & James, R. H. (2004). Black lipid membranes: Visualizing the structure, dynamics, and substrate dependence of membranes. The Journal of Physical Chemistry B, 108, 16040–16049.

    Article  Google Scholar 

  57. Sackmann, E. (1996). Supported membranes: Scientific and practical applications. Science, 271, 43–48.

    Article  Google Scholar 

  58. Sackmann, E., & Tanaka, M. (2000). Supported membranes on soft polymer cushions: Fabrication, characterization and applications. Trends in Biotechnology, 18, 58–64.

    Article  Google Scholar 

  59. Sáenz, J., Grosser, D., Bradley, A., Lagny, T., Lavrynenko, O., Broda, M., et al. (2015). Hopanoids as functional analogues of cholesterol in bacterial membranes. Proceedings of the National Academy of Sciences, 112(38), 11971–11976.

    Article  Google Scholar 

  60. Schiller, S. M., Naumann, R., Lovejoy, K., Kunz, H., & Knoll, W. (2003). Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. Angewandte Chemie International Edition in English, 42(2), 208–211.

    Article  Google Scholar 

  61. Schrems, A., Larisch, V. D., Stanetty, C., Dutter, K., Damiati, S., Sleytr, U. B., et al. (2011). Liposome fusion on proteinaceous S-layer lattices triggered via β-diketone ligand–europium (III) complex formation. Soft Matter, 7, 5514–5518.

    Article  Google Scholar 

  62. Schuster, B., & Sleytr, U. B. (2002). Single channel recordings of α-hemolysin reconstituted in S-layer stabilized lipid bilayers. Bioelectrochemistry, 55, 5–7.

    Article  Google Scholar 

  63. Schuster, B., Pum, D., Sara, M., Braha, O., Bayley, H., & Sleytr, U. B. (2001). S-layer ultrafiltration membranes: A new support for stabilizing functionalized lipid membranes. Langmuir, 17, 499–503.

    Article  Google Scholar 

  64. Seddon, A., Curnow, P., & Booth, P. (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1666(1–2), 105–117.

    Article  Google Scholar 

  65. Sharma, G., Sharma, A. R., Nam, J. S., Doss, G. P. C., Lee, S. S., & Chakraborty, C. (2015). Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. Journal of Nanobiotechnology, 13, 74.

    Article  Google Scholar 

  66. Siegel, A. P., Hussain, N. F., Johnson, M., & Naumann, C. A. (2012). Metric between buckling structures and elastic properties in physisorbed polymertethered lipid monolayers. Soft Matter, 8, 5873–5880.

    Article  Google Scholar 

  67. Sinner, E. K., Reuning, U., Kok, F. N., Sacca, B., Moroder, L., Knoll, W., et al. (2004). Incorporation of integrins into artificial planar lipid membranes: Characterization by plasmon-enhanced fluorescence spectroscopy. Analytical Biochemistry, 333(2), 216–224.

    Article  Google Scholar 

  68. Sleytr, U. B., Schuster, B., Egelseer, E. M., & Pum, D. (2014). S-layers: Principles and applications. FEMS Microbiology Reviews, 38(5), 823–864.

    Article  Google Scholar 

  69. Sprong, H., Sluijs, P., & Meer, G. (2001). How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology, 2, 504–513.

    Article  Google Scholar 

  70. Su, Z., Jiang, Y., Velázquez-Manzanares, M., Leitch, J. J., Kycia, A., & Lipkowski, J. (2013). Electrochemical and PM-IRRAS studies of floating lipid bilayers assembled at the Au (111) electrode pre-modified with a hydrophilic monolayer. Journal of Electroanalytical Chemistry, 688, 76–85.

    Article  Google Scholar 

  71. Szoka, F., & Papahadjopoulos, D. (1978). Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences of the United States of America, 75, 4194–4198.

    Article  Google Scholar 

  72. Tanaka, M. (2006). Polymer-supported membranes: Physical models of cell surfaces. MRS Bulletin, 31, 513–520.

    Article  Google Scholar 

  73. Tanaka, M., & Sackmann, E. (2005). Polymer-supported membranes as models of the cell surface. Nature, 437, 656–663.

    Article  Google Scholar 

  74. Torchilin, V. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4, 145–160.

    Article  Google Scholar 

  75. Van Meer, G., Voelker, D., & Feigenson, G. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews Drug Discovery, 9(2), 112–124.

    Google Scholar 

  76. Wagner, M. L., & Tamm, L. K. (2000). Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophysical Journal, 79, 1400–1414.

    Article  Google Scholar 

  77. Walde, P., Cosentino, K., Engel, H., & Stano, P. (2010). Giant vesicles: Preparations and applications. ChemBioChem, 11, 848–865.

    Article  Google Scholar 

  78. Wu, W., & Jiang, X. (2016). Polymeric micelles for drug delivery. In Y. Zhao & Y. Shen (Eds.), Biomedical nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  79. Yu, X., Trase, I., Ren, M., Duval, K., Guo, X., & Chen, Z. (2016). Design of nanoparticle-based carriers for targeted drug delivery. Journal of Nanomaterials, 2016, 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Damiati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damiati, S. (2018). Can We Rebuild the Cell Membrane?. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics