Advertisement

A Density Functional Theory-Based Study of Electronic and Optical Properties of Anatase Titanium Dioxide

  • Debashish DashEmail author
  • Saurabh Chaudhury
  • Susanta Kumar Tripathy
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 462)

Abstract

This paper presents an analysis of structural, electronic, and optical properties of pristine anatase titanium dioxide (TiO2) using orthogonalized linear combinations of atomic orbitals (OLCAO) basis set under the framework of density functional theory (DFT). The lattice constants such as a and c, band diagram, density of states (DOS) have also been studied. The band gap shows indirect nature around the fermi level in anatase TiO2. Density of states shows a contribution of Ti3d and O2p orbitals in conduction and valence band regions. From the analysis of optical properties, it is seen that the anatase TiO2 supports the interband indirect transition from O2p in valence region to Ti3d in the conduction region. All the optical properties are discussed in detail under the energy range of 0–16 eV. Further, we have compared the results with previous works as well as with the experimental results. We found that DFT-based simulation results are approximation to the experimental results.

Keywords

DFT Anatase TiO2 Electronic structure Optical properties 

References

  1. 1.
    M Landmann, E Rauls and W G Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.: Condens. Matter 24 195503, pp. 1–6, 2012.Google Scholar
  2. 2.
    H Tang, F Levy, H Berger, and P E Schmid, Urbach tail of anatase TiO2, Phys. Rev. B, vol. 52, no- 11, pp. 7771 – 7774, 1995.Google Scholar
  3. 3.
    Wan-Jian Yin, Shiyou Chen, Ji Hui Yang, Xin-Gao Gong, Yanfa Yan, and Su-Huai Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction, Appl. Phys. Lett., vol. 96, issue- 22, pp. 1–3, 221901.Google Scholar
  4. 4.
    F Izumi and Y Fujiki, Bull. Chem. Soc. Jpn. Vol. 49, 709, 1976.Google Scholar
  5. 5.
    G. D. Davtyan, Sov. Phys. Crystallogr., vol. 21, 499, 1976.Google Scholar
  6. 6.
    G. D. Davtyan, V. S. Grunin, and V. A. Ioffe, Sov. Phys. Semicond., Vol. 11, 1299, 1977.Google Scholar
  7. 7.
    L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, and F. Levy, High mobility n-type charge carriers in large single crystals of anatase (TiO2), J. Appl. Phys., vol.- 75 (1), pp. 633–635, 1994.Google Scholar
  8. 8.
    Mazmira Mohamad, Bakhtiar Ul Haq, R. Ahmed, A. Shaari, N. Ali, R. Hussain, A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs, Materials Science in Semiconductor Processing, vol. 31, pp. 405–414, 2014.Google Scholar
  9. 9.
    Shang-Di Mo and W Y Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B, vol. 51, issue. 19, pp. 13023 – 13032, 1995.Google Scholar
  10. 10.
    V P Zhukov and E V Chulkov., Ab initio approach to the excited electron dynamics in rutile and anatase TiO2, J. Phys.: Condens. Matter, vol. 22, number- 43, 435802, pp. 1–8, 2010.Google Scholar
  11. 11.
    A. Thilagam, D. J. Simpson, and A. R. Gerson, A first- principles study of the dielectric properties of TiO2 polymorphs, J. Phys.: Condens. Matter, vol. 23, no. -2, 025901, pp. 1–13, 2011.Google Scholar
  12. 12.
    R. Asahi, Y. Taga, W Mannstadt and A J Freeman, Electronic and optical properties of anatase TiO2, Phys. Rev. B 61, pp. 7459–7465, 2000.Google Scholar
  13. 13.
    Gong Sai and Liu Bang-Gui, Electronic structures and optical properties of TiO2: Improved density-functional-theory investigation, Chin. Phys. B, vol. 21, no. 5, 057104, pp. 1–7, 2012.Google Scholar
  14. 14.
    H M Lawler, J. J. Rehr, F. Vila, S. D. Dalosto, E. L. Shirley and Z. H. Levine, Optical to UV spectra and birefringence of SiO2 and TiO2: First- principles calculations with excitonic effects, Phys. Rev. B 78, 205108, pp. 1–8, 2008.Google Scholar
  15. 15.
    Letizia Chiodo, Juan Maria Garcia- Lastra, Amilcare Iacomino, Stefano Ossicini, Jin Zhao, Hrvoje Petek and Angel Rubio, Self- energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases, Phys. Rev. B, vol. 82, issue – 4, 045207, pp.- 1–12, 2010.Google Scholar
  16. 16.
    W. Y. Ching and Yong-Nian Xu, R. H. French, First-principles investigation of the optical properties of crystalline poly (di-n-hexylsilane), Phys. Rev. B, vol. 54, no. – 19, pp. 13546–13550, (1996).Google Scholar
  17. 17.
    Qi-Jun Liu, Ning-Chao Zhang, Fu-Sheng Liu, and Zheng-Tang Liu, Structural, elastic, electronic and optical properties of various mineral phases of TiO2 from first-principles calculations, Phys. Scr., vol. 89, no. – 7, 075703, pp. 1–14, 2014.Google Scholar
  18. 18.
    Lukas Thulin and John Guerra, Calculations of strain-modified anatase TiO2 band structures, Phys. Rev B 77, 195112, pp. 1–5, 2008.Google Scholar
  19. 19.
    J. David Griffiths, “Introduction to Electrodynamics”, 3rd ed., Prentice Hall, Upper Saddle River, New Jersey, 1999.Google Scholar
  20. 20.
    Walter A. Harrison, Bond-orbital model and the properties of Tetrahedrally coordinated solids, Phys. Rev. B, vol. 8, no. 10, pp. 4487–4498, 1973.Google Scholar
  21. 21.
    Richard M Martin, “Electronic structure: Basic theory and practical methods”. Cambridge University Press, New York, 2004.Google Scholar
  22. 22.
    T. Ozaki, Variationally optimized atomic orbitals for large- scale electronic structures, Phys. Rev. B, vol. 67, issue- 15, 155108, pp. 1–5, 2003.Google Scholar
  23. 23.
    Uttam KumarChowdhury, Md. Atikur Rahman, Md. Afjalur Rahman, M. T. H. Bhuiyan and Md. Lokman Ali, Ab initio study on structural, elastic, electronic and optical properties of cuprate based superconductor, Cogent Phys., vol. 3:1231361, pp. 1–10, 2016.Google Scholar
  24. 24.
    F. Birch, Phys. Rev. B, vol. 71, pp. 809–824, 1947.Google Scholar
  25. 25.
    J. P. Perdew & Zunger, Physical Review B, vol. 23, pp. 5048–5079, 1981.Google Scholar
  26. 26.
    T. Zhu and Shang-Peng Gao, The stability, Electronic Structure, and Optical Property of TiO2 Polymorphs, J. Phys. Chem. C, vol. 118, pp. 11385–11396, 2014.Google Scholar
  27. 27.
    H. J. Monkhorst, J. D. Pack, Phys. Rev. B, vol. 13, pp. 5188–5192, 1976.Google Scholar
  28. 28.
    S. Y. Kim, Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods, Appl. Optics, Vol. 35, No. 34, pp. 6703–6707, 1996.Google Scholar
  29. 29.
    R. J. Gonzalez and R. Zallen, Infrared reflectivity and lattice fundamentals in anatase TiO2, Phys. Rev. B, vol. 55, no.- 11, pp. 7014–7017, 1997.Google Scholar
  30. 30.
    M. P. Desjarlais, Contrib. Plasma Phys., vol. 45(3–4), pp. 300–304, 2005.Google Scholar
  31. 31.
    Debanarayan Jana, Anirban Chakraborti, Li- Chyong Chen, Chun Wei Chen and Kuei-Hsien Chen, First principles calculations of the optical properties of CxNy single walled nanotubes, Nanotechnology, IOP publishing, vol. 20 175701, pp. 1–12, 2009.Google Scholar
  32. 32.
    F. Wooten, “Optical Properties of Solids” (Academic Press, New York and London, 1972).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Debashish Dash
    • 1
    Email author
  • Saurabh Chaudhury
    • 1
  • Susanta Kumar Tripathy
    • 2
  1. 1.Department of Electrical EngineeringNIT SilcharSilcharIndia
  2. 2.Department of ECENIT SilcharSilcharIndia

Personalised recommendations