Skip to main content

A Work on Grid Connected Solar Photovoltaic System Using Particle Swarm Optimization Technique

  • Conference paper
  • First Online:
Advances in Communication, Devices and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 462))

Abstract

Nowadays, solar photovoltaic (PV) systems are rapid growing energy resources in the world. Solar PV system depends upon the solar irradiation and temperature. Number of maximum power point tracking (MPPT) techniques can be used to extract the maximum power. During bad weather condition or partial shading condition, conventional MPPTs are unable to recognize the maximum power point (MPP). Consequently, these algorithms cannot be utilized as a part of PV framework to concentrate maximum accessible power. For this, particle swarm optimization (PSO) is utilized to reinstate particles to scan for the new maximum power point (MPP). A detailed simulation is done in the MATLAB/Simulink. PSO system gives various focal points, it has a speedier following velocity, it can likewise build up the MPP for any ecological varieties including partial shading condition, and also it is easy to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oprism M. and pneumaticos S.: Potential for electricity generation from emerging renewable sources in Canada, in Proc. IEEE EIC. Climate Change technology conf., pp. 1–9, (2006).

    Google Scholar 

  2. Bo Y., Wuhua L., Yi Z. and Xiangning H.: design and analysis of a grid connected photovoltaic power system, IEEE Transaction on Power electronics. vol. 25, no. 4, pp. 992–1000, (2010).

    Google Scholar 

  3. Femia N., Granozio D., spagnuolo G. and vitelli M.,: optimized one-cycle control in photovoltaic grid connected applications, IEEE Transaction on Aerospace and Electronic System, vol. 42, no. 3, pp. 954–972, (2006).

    Google Scholar 

  4. Petrone G., Spagnuolo G., Teodorescu R., Veerachary M. and Viteli M.: reliability issues in photovoltaic power processing systems, IEEE Transaction on Industrial electronics, vol. 55, no. 7, pp. 2569–2580.

    Google Scholar 

  5. Katiraei F. and Aguero J.: Solar integration challenges, IEEE power Energy Mag., vol. 9, no. 3, pp. 62–71, (2011).

    Google Scholar 

  6. Enslin J. H. R., Wolf M.S., Snyman D.B. and Swiegers W.: Integrated photovoltaic maximum power point tracking converter, IEEE Transaction on Industrial electron., vol. 44, pp. 769–773, (1997).

    Google Scholar 

  7. Hua C., Lin J. and Shen C.: Implementation of a DSP-controlled photovoltaic system with peak power tracking, IEEE Transaction on Industrial Electron., vol. 45, pp. 99–107, (1998).

    Google Scholar 

  8. Veerachary M., Senjyu T., and Uezato K.: Neural-Network based maximum power point tracking of coupled-inductor interleaved boost converter supplied PV system using fuzzy controller, IEEE Transaction on Industrial Electronics, vol. 50, pp. 749–758, (2003).

    Google Scholar 

  9. Veerachary M., Senjyu T. and Uezato K.: Feedforward maximum power point tracking of PV system using fuzzy controller, IEEE Transactions on Aerospace and Electronic System, vol. 38, pp. 969–981, (2002).

    Google Scholar 

  10. Kasa N., Iida T. and Chen I.: Flyback inverter controlled by sensor less current MPPT for photovoltaic power system, IEEE Transaction on Industrial Electronics, vol. 52, pp. 1145–1152, (2005).

    Google Scholar 

  11. Esram T. and Chapman P. L.: Comparison of photovoltaic array maximum power point tracking technique, IEEE Transaction on Energy Conversion, vol. 22, pp. 439–449, (2007).

    Google Scholar 

  12. Sun X., Wu W. and Zhao Q.: A research on photovoltaic energy controlling system with maximum power point tracking, In Proceeding of PCC-OSAKA, vol. II, pp. 822–826, (2003).

    Google Scholar 

  13. Kasa N., Iida T. and Majumdar G.: Robust control for maximum power point tracking in photovoltaic system, In Proceeding of PCC-OSAKA, vol. II, D6–4, pp. 827–832, (2002).

    Google Scholar 

  14. Shraif M. F., Alons C. and Martinez A.: A simple and robust maximum power point control for ground photovoltaic generators, In proceedings of IPEC-Tokyo, vol. I, pp. 158–163, (2000).

    Google Scholar 

  15. Veerachary M.: Power tracking for non-linear PV sources with coupled inductor SEPIC converter, IEEE Transactions on Aerospace and Electronic System, vol. 41, 1019–1029, (2005).

    Google Scholar 

  16. Matsui M.: New MPPT control scheme utilizing power balance at DC link instead of array power detection, In Proceedings of IPEC-Tokyo, vol. 1, pp. 164–169, (2000).

    Google Scholar 

  17. Kuo Y.: Novel maximum power point tracking controller for photovoltaic energy conversion system, IEEE Transaction on Industrial electronics, vol. 48, 594–601, (2001).

    Google Scholar 

  18. Kobayashi K., Matsuo H. and Sekine Y.: “An excellent operating point tracker of the solar cell power supply system,” IEEE Transaction on Industrial Electronics, vol. 53, pp. 495–499, Feb. 2006.

    Google Scholar 

  19. Kim I. S., Kim M. B. and Youn M. J.: New maximum power point tracker using sliding mode observer for estimation of solar array current in the grid connected photovoltaic system, IEEE transaction on industrial electronics, vol. 53, pp. 1027–1035, (2006).

    Google Scholar 

  20. Mutoh N., Ohno M. and Inoue T.: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems, IEEE Transaction on Industrial Electronics, vol. 53, pp. 1055–1065, (2006).

    Google Scholar 

  21. Kim I. S., Kim M. B. and Youn M.J.: New Maximum power point tracker using sliding mode observer for estimation of solar array current in grid connected photo voltaic system, IEEE Transaction on Industrial Electronics, vol. 53, pp. 1027–1035, (2006).

    Google Scholar 

  22. Mutoh N., Ohno M. and Inoue T.: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems, IEEE Transaction in Industrial Electronics, vol. 53, pp. 1055–1065, (2006).

    Google Scholar 

  23. Kajihara A. and Harakawa T.: On consideration of equivalent model about PV cell under partial shading, In Proceeding of Japan Industry Application Society Conference, vol. 1, pp. 289–292, (2005).

    Google Scholar 

  24. Zhang L., Bai Y. and Amoudi A.: GA-RBF neural network based maximum power point tracking for grid connected photovoltaic systems, In Proceeding of IEEE International Conference on Power Electronics, Machines and Drives, pp. 18–23, (2002).

    Google Scholar 

  25. Kennedy J. and Eberhart R.: Particle swarm optimization, In Proceeding of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948, (1995).

    Google Scholar 

  26. Kadirkamanathan V., Selvarajah K. and Fleming P. J.: Stability analysis of the particle dynamics in particle swarm optimizer, IEEE Transaction on Evolutionary Computation, vol. 10, pp. 245–255, (2006).

    Google Scholar 

  27. Manohar K. and Rani P. S.: MPPT and simulation for a grid connected photovoltaic system and fault analysis, The International Journal of Engineering and Science, vol. 1, pp. 158–166, (2012).

    Google Scholar 

  28. Miyatake M., Veerachary M., Fujii F., Ko H.: Maximum power point tracking of multiple photovoltaic arrays- A PSO approach, IEEE Transaction on Aerospace and Electronic Systems, vol. 47, no. 1, (2011).

    Google Scholar 

  29. Valle Y. D., Vanayagamoorthy G.K., Mohagheghi S., Hernandez J.C. and Harley R. G.: Particle swarm optimization -Basic concepts, variants and applications in power systems, IEEE Transaction on Evolutionary Computation, vol. 12, no. 2, pp. 171–195, (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bharti or Akhil Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bharti, Gupta, A. (2018). A Work on Grid Connected Solar Photovoltaic System Using Particle Swarm Optimization Technique. In: Bera, R., Sarkar, S., Chakraborty, S. (eds) Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 462. Springer, Singapore. https://doi.org/10.1007/978-981-10-7901-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7901-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7900-9

  • Online ISBN: 978-981-10-7901-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics