Advertisement

MistGIS: Optimizing Geospatial Data Analysis Using Mist Computing

  • Rabindra K. Barik
  • Ankita Tripathi
  • Harishchandra Dubey
  • Rakesh K. Lenka
  • Tanjappa Pratik
  • Suraj Sharma
  • Kunal Mankodiya
  • Vinay Kumar
  • Himansu Das
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 710)

Abstract

Geospatial data analysis with the help of cloud and fog computing is one of the emerging areas for processing, storing, and analysis of geospatial data. Mist computing is also one of the paradigms where fog devices help to reduce the latency period and increase throughput for assisting at the near of edge device of the client. It discusses the emergence of mist computing for mining analytics in geospatial big data from geospatial application. This paper developed a mist computing-based framework for mining analytics from geospatial big data. We developed MistGIS framework for Ganga River Management System using mist computing. It built a prototype using Raspberry Pi, an embedded microprocessor. The developed MistGIS framework has validated by doing preliminary analysis including K-means clustering and overlay analysis. The results showed that mist computing can assist the fog and cloud computing hold an immense promise for analysis of big data in geospatial application particularly in the management of Ganga River Basin.

Keywords

River Cloud computing Open-source GIS Geospatial big data Fog computing Mist Edge Overlay analysis K-means 

References

  1. 1.
    Chen, Z., Chen, N., Yang, C., Di, L.: Cloud computing enabled web processing service for earth observation data processing, IEEE journal of selected topics in applied earth observations and remote sensing, Vol. 5, No. 6, (2012)1637–1649Google Scholar
  2. 2.
    Brovelli, M.A., Minghini, M., Moreno-Sanchez, R. and Oliveira, R.: Free and open source software for geospatial applications (FOSS4G) to support Future Earth, International Journal of Digital Earth, (2016) 1–19Google Scholar
  3. 3.
    Huang, Q., Yang, C., Liu, K., Xia, J., Xu, C., Li, J., Gui, Z., Sun, M. and Li, Z.: Evaluating open-source cloud computing solutions for geosciences, Computers & Geosciences, (2013) 5941–52Google Scholar
  4. 4.
    Yang, C., Michael G., Qunying H., Doug N., Robert R., Yan X., Myra B. & Daniel F.: Spatial cloud computing: how can the geospatial sciences use & help shape cloud computing?, International Journal of Digital Earth, Vol. 4, No.4, (2011) 305–329Google Scholar
  5. 5.
    Barik, R. K., Dubey, H., Samaddar, A. B., Gupta, R. D. & Ray, P. K.: FogGIS: Fog Computing for geospatial big data analytics, IEEE International Conference on Electrical, Computer & Electronics Engineering, (2016) 613–618Google Scholar
  6. 6.
    Dubey, H., Constant, N., Monteiro, A., Abtahi, M., Borthakur, D., Mahler, L., Sun, Y., Yang, Q., Mankodiya, K.: Fog computing in medical internet-of-things: Architecture, implementation, and applications, Handbook of Large-Scale Distributed Computing in Smart Health-care, Springer International Publishing AG (2017)Google Scholar
  7. 7.
    Chiang, M., Zhang, T.: Fog and iot: An overview of research opportunities, IEEE Internet of Things Journal, Vol. 3, No.6, (2016) 854–864Google Scholar
  8. 8.
    Evangelidis, Konstantinos, Konstantinos, Ntouros, Stathis, Makridis, Constantine, Papatheodorou.: Geospatial services in the Cloud, Computers & Geosciences, Vol. 63, (2014) 116–122Google Scholar
  9. 9.
    Barik, R. K., & Samaddar, A. B.: Service Oriented Architecture Based SDI Model for Education Sector in India, International Conference on Frontiers of Intelligent Computing: Theory and Applications, (2014) 555–562Google Scholar
  10. 10.
    Patra, S.S. and Barik, R.K.: Dynamic Dedicated Server Allocation for Service Oriented Multi-Agent Data Intensive Architecture in Biomedical and Geospatial Cloud, In Cloud Technology: Concepts, Methodologies, Tools, and Applications, IGI Global, (2015) 2262–2273Google Scholar
  11. 11.
    Dubey, H., Yang, J., Constant, N., Amiri, A.M., Yang, Q., Makodiya, K.: Fog data: Enhancing telehealth big data through fog computing. In: ACM Proceedings of the ASE BigData & Social Informatics, (2015) 14Google Scholar
  12. 12.
    Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A. and Jie, W.: Remote sensing big data computing: challenges and opportunities, Future Generation Computer Systems, Vol. 51, (2015) 47–60Google Scholar
  13. 13.
    Barik, R., Dubey, H., Sasane, S., Misra, C., Constant, N. and Mankodiya, K.: Fog2Fog: Augmenting Scalability in Fog Computing for Health GIS Systems. In Connected Health: Applications. In: 2017 IEEE/ACM International Conference on Systems and Engineering Technologies (CHASE), (2017) 241–242Google Scholar
  14. 14.
    http://www.thinnect.com/mist-computing/ [accessed on 17th July 2017]
  15. 15.
  16. 16.
    Orsini G, Bade D, Lamersdorf W.: Computing at the mobile edge: designing elastic android applications for computation offloading, In IEEE IFIP Wireless and Mobile Networking Conference (WMNC), (2015) 112–119Google Scholar
  17. 17.
    Barik, R.K., Dubey, A.C., Tripathi, A., Pratik, T., Sasane, S., Lenka, R.K., Dubey, H., Mankodiya, K. & Kumar, V.: Mist Data: Leveraging Mist Computing for Secure and Scalable Architecture for Smart and Connected Health, Procedia Computer Science, Vol. 125, (2018) 647–653Google Scholar
  18. 18.
    Preden JS, Tammemäe K, Jantsch A, Leier M, Riid A, Calis E.: The benefits of self-awareness and attention in fog and mist computing, Computer, Vol. 48, No.7, (2015) 37–45Google Scholar
  19. 19.
    Uehara M.: Mist Computing: Linking Cloudlet to Fogs, In International Conference on Computational Science/Intelligence & Applied Informatics, Springer, Cham, (2017) 201–213Google Scholar
  20. 20.
    Internet-2:http://gisserver.civil.iitd.ac.in/grbmp/downloaddataset [Accessed on: 27th January 2017]
  21. 21.
    Barik, R.K.: CloudGanga: Cloud Computing Based SDI Model for Ganga River Basin Management in India, International Journal of Agricultural and Environmental Information Systems (IJAEIS), Vol. 8, No. 4 (2017) 54–71Google Scholar
  22. 22.
    Gupta, A. and Merchant, P.S.: Automated Lane Detection by K-means Clustering: A Machine Learning Approach, Electronic Imaging, Vol. 14, (2016) 1–6Google Scholar
  23. 23.
    Internet-3:http://qgiscloud.com/cloudganga/FogSDI [Accessed on: 6th February 2017]
  24. 24.
    Internet-4:http://m.qgiscloud.com/cloudganga/FogSDI [Accessed on: 6th February 2017]
  25. 25.
    Internet-1: Ganga River Basin, Management Plan – 2015, Link: http://pib.nic.in/newsite/PrintRelease.aspx?relid=133450 [Accessed on 23th January, 2017]
  26. 26.
    Barik, R.K., Samaddar, Arun B. and Gupta, R.D.: Investigations into the Efficacy of Open Source GIS Software, International Conference, Map World Forum, on Geospatial Technology for Sustainable Planet Earth, Feb 10–13 (2009)Google Scholar
  27. 27.
    Lenka, R.K., Barik, R.K., Gupta, N., Ali, S.M., Rath, A. and Dubey, H.: Comparative analysis of SpatialHadoop and GeoSpark for geospatial big data analytics, In Contemporary Computing and Informatics, IEEE International Conference on, (2016) 484–488Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rabindra K. Barik
    • 1
  • Ankita Tripathi
    • 2
  • Harishchandra Dubey
    • 3
  • Rakesh K. Lenka
    • 4
  • Tanjappa Pratik
    • 4
  • Suraj Sharma
    • 4
  • Kunal Mankodiya
    • 5
  • Vinay Kumar
    • 6
  • Himansu Das
    • 7
  1. 1.School of Computer ApplicationsKalinga Institute of Industrial TechnologyBhubaneswarIndia
  2. 2.John Deere India Private LimitedChennaiIndia
  3. 3.Electrical EngineeringThe University of Texas at DallasDallasUSA
  4. 4.Department of Computer Science & EngineeringIIIT BhubaneswarBhubaneswarIndia
  5. 5.University of Rhode IslandKingstonUSA
  6. 6.Department of ECEVisvesvaraya National Institute of TechnologyNagpurIndia
  7. 7.School of Computer EngineeringKalinga Institute of Industrial TechnologyBhubaneswarIndia

Personalised recommendations