Use of enzymes in pulp bleaching has attracted considerable attention in recent years and achieved interesting results. Enzymes of the hemicellulolytic type, particularly xylanases, are used commercially for pulp bleaching. Xylanase enzymes have proven to be a cost-effective way for mills to realize a variety of bleaching benefits including reducing AOX discharges primarily by decreasing chlorine gas usage, debottlenecking mills limited by chlorine dioxide generator capacity, eliminating chlorine gas usage for mills at high chlorine dioxide substitution levels, increasing the brightness of the ceiling particularly for mills contemplating ECF and TCF bleaching sequences, and decreasing the cost of bleaching chemicals, particularly for mills using large amounts of peroxide or chlorine dioxide. These benefits are achieved over the long term when the enzymes are selected and applied properly in the mill. The use of oxidative enzymes from white-rot fungi can directly attack lignin. These enzymes are highly specific toward lignin; there is no damage or loss of cellulose and can produce larger chemical savings than xylanase but has yet not been developed to the full scale. It is being studied in several laboratories all over the world. Certain white-rot fungi can delignify kraft pulps increasing their brightness and their responsiveness to brightening with chemicals. The fungal treatments are too slow but the enzymes, manganese peroxidase and laccase, can also delignify pulps and enzymatic processes are likely to be easier to optimize and apply than the fungal treatments. Development work on laccase and manganese peroxidase continues. The overview of developments in the application of xylanase enzymes, lignin-oxidizing enzymes, and white-rot fungi in bleaching of chemical pulps is presented.


Enzymes Pulp bleaching Xylanase enzymes Lignin-oxidizing enzymes Manganese peroxidase Laccase AOX ECF bleaching TCF bleaching Oxidative enzymes White-rot fungi Delignification Lignin Kraft pulp 


  1. Addleman K, Archibald FS (1993) Kraft pulp bleaching and delignification by dikaryons and monokaryons of Trametes versicolor. Appl Environ Microbiol 59:266–273Google Scholar
  2. Agnihotri S, Dutt D, Kumar A (2012) Effect of xylanases from C. disseminatus SW-1 NTCC-1165 on pulp and efficient characteristics during CEHH bleaching of soda-AQ bagasse pulp. Int J Sci Technol 1:346–357Google Scholar
  3. Ahlawat S, Battan B, Dhiman SS, Sharma J, Mandhan RP (2007) Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. J Ind Microbiol Biotechnol 34:763–770CrossRefGoogle Scholar
  4. Allison RW, Clark TA, Wrathall SH (1993a) Pretreatment of radiata pine kraft pulp with a thermophilic enzyme Part I. Effect on conventional bleaching. Appita 46(4):269–273Google Scholar
  5. Allison RW, Clark TA, Wrathall SH (1993b) Pretreatment of radiata pine kraft pulp with a thermophillic enzyme Part II. Effect on oxygen, ozone and chlorine dioxide bleaching. Appita 46(5):349–353Google Scholar
  6. Amann A (1997) The Lignozym process coming closer to the mill. In: Proceedings of the 9th ISWPC, Montreal, QC, pp F4-1–F4-5Google Scholar
  7. Arbeloa M, de Leseleuc J, Goma G, Pommier JC (1992) An evaluation of the potential of lignin peroxidases to improve pulps. Tappi J 75(3):215–221Google Scholar
  8. Archana A, Satyanarayana T (2003) Purification and characterization of a cellulose free xylanase of a moderate thermophile Bacillus licheniformis A99. World J Microbiol Biotechnol 19(1):53–57CrossRefGoogle Scholar
  9. Archibald FS (1992a) Lignin peroxidase is not important in biological bleaching and delignification of kraft brownstock by Trametes versicolor. Appl Environ Microbiol 58:3101–3109Google Scholar
  10. Archibald FS (1992b) The role of fungus fiber contact in the biobleaching of kraft brownstock by Trametes versicolor. Holzforschung 46:305–310CrossRefGoogle Scholar
  11. Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69(4):1953–1958CrossRefGoogle Scholar
  12. Atkinson D, Moody D, Gronberg V (1993) Enzymes make pulp bleaching faster. Invest Technol Pap 35(136):199–209Google Scholar
  13. Awakaumova AV, Nikolaeva TV, Vendilo AG, Kovaleva NE, Sinitzyn AP (1999) ECF bleaching of hardwood kraft pulp: new aspects. In: 13th international papermaking conference—progress-99, 22–24 Sept, Cracow, Poland, pp IV-5-1–IV-5-13Google Scholar
  14. Bajpai P (1997a) Microbial xylanolytic enzyme system: properties and applications in advances. Appl Microbiol (edited by Neidleman S, Laskin A, Academic Press, New York) 43:141–194Google Scholar
  15. Bajpai P (1997b) Enzymes in pulp and paper processing. Miller Freeman, San Francisco, California, USAGoogle Scholar
  16. Bajpai P (1999) Application of enzymes in pulp & paper industry. Biotechnol Prog 15(2):147–157CrossRefGoogle Scholar
  17. Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24:11, 1–58 (CRC Press)Google Scholar
  18. Bajpai P (2009) Xylanases. In: Schaechter M, Lederberg J (eds) Encyclopedia of microbiology, 3rd edn, vol 4. Academic Press, San Diego, California, USA, pp 600–612Google Scholar
  19. Bajpai P (2016) Pretreatment of Lignocellulosic Biomass for Biofuel Production. Springer, Singapore, pp 71–75Google Scholar
  20. Bajpai P, Bhardwaj NK, Maheshwari S, Bajpai PK (1993) Use of xylanase in bleaching of eucalypt kraft pulp. Appita 46(4):274–276Google Scholar
  21. Bajpai P, Bhardwaj NK, Bajpai PK, Jauhari MB (1994) The impact of xylanases in bleaching of eucalyptus kraft pulp. J Biotechnol 36(1):1–6CrossRefGoogle Scholar
  22. Bajpai P, Ananad A, Bajpai PK (2006) Bleaching with lignin oxidizing enzymes. Biotechnol Annu Rev 12:349–378CrossRefGoogle Scholar
  23. Bao WL, Fukushima Y, Jensen KA, Moen MA (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300CrossRefGoogle Scholar
  24. Barr DP, Shah MM, Grover TA, Aust SD (1992) Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 298:480–485CrossRefGoogle Scholar
  25. Batalha LR, Silva J, Jardim C, Oliveira R, Colodette J (2011) Effect of ultrasound and xylanase treatment on the physical-mechanical properties of bleached eucalyptus kraft pulp. Nat Resour 2(2):125–129Google Scholar
  26. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338CrossRefGoogle Scholar
  27. Bermek H, Li K, Eriksson KE (2000) Pulp bleaching with manganese peroxidase and xylanase: a synergistic effect. Tappi J 83(10):69Google Scholar
  28. Bermek H, Li K, Eriksson KE (2002) Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bioresour Technol 85(3):249–252CrossRefGoogle Scholar
  29. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290 (Eiras KM)Google Scholar
  30. Bim MA, Franco TT (2000) Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J Chromatogr 743(1):346–349Google Scholar
  31. Blomstedt M, Asikainen J, Lahdeniemi A, Ylonen T, Paltakari J, Hakala TK (2010) Effect of xylanase treatment on dewatering properties of birch kraft pulp. BioResources 5(2):1164–1177Google Scholar
  32. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102CrossRefGoogle Scholar
  33. Bourbonnais R, Paice MG (1992) Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-3-ethylbenzthiazoline-6-sulphonate. Appl Microbiol Biotechnol 36:823–827CrossRefGoogle Scholar
  34. Bourbonnais R, Paice MG (1996) Enzymatic delignification of kraft pulp using laccase and a mediator. Tappi J 76(6):199–204Google Scholar
  35. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2′-Azinobis (3-ethylbenzothiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61(5):1876–1880Google Scholar
  36. Bourbonnais R, Leech D, Paice MG, Freiermuth B (1997) Reactivity and mechanism of laccase-mediators for pulp delignification. In: Proceedings of the Tappi biological science symposium, pp 335–338Google Scholar
  37. Bourbonnais R, Rochefort D, Paice MG, Renaud S, Leech D (2000) Transition metal complexes: a new class of laccase-mediators for pulp bleaching. Tappi J 83(10):68Google Scholar
  38. Cadena EM, Vidal T, Torres AL (2010) Influence of the hexenuronic acid content on refining and ageing in eucalyptus TCF pulp. Bioresour Technol 101(10):3554–3560CrossRefGoogle Scholar
  39. Cai D, Tein M (1989) On the reactions of lignin peroxidase compounds III (isozyme H8). Biochem Biophys Res Commun 162:464–470CrossRefGoogle Scholar
  40. Cai D, Tein M (1992) Kinetic studies on the formation and decomposition of compound II and III. Reactions of lignin peroxidase with hydrogen peroxide. J Biol Chem 267:11149–11155Google Scholar
  41. Call HP (1993) Process for producing cellulose from lignin containing raw materials using an enzyme or microorganism while monitoring and maintaining the redox potential. U.S. Patent 5, 203, 964Google Scholar
  42. Call HP (1994a) Multicomponent bleaching system. WO 94/29425Google Scholar
  43. Call HP (1994b) Process for modifying, breaking down or bleaching lignin, materials containing lignin or like substances. PCT World patent application WO 94/29510Google Scholar
  44. Call HP, Mücke I (1994a) Enzymatic bleaching of pulps with the laccase-mediator-system In: Pulping conference AlChE session, San Diego, CA, USA, pp 38–52Google Scholar
  45. Call HP, Mücke I (1994b) State of the art of enzyme bleaching and disclosure of a breakthrough process In: International non-chlorine bleaching conference, Amelia Island, Fl, USAGoogle Scholar
  46. Call HP, Mücke I (1995a) Further improvements of the laccase-mediator-system (LMS) for enzymatic delignification and results from large scale trials. In: International non-chlorine bleaching conference, 5–9 Mar, Amelia Island, Florida, USA, p 16Google Scholar
  47. Call HP, Mücke I (1995b) The laccase-mediator-system (LMS). In: Srebotnk E, Messner K (eds) Biotechnology in the pulp and paper industry: recent advances in applied and fundamental research. Proceedings of the 6th international conference on biotechnology in the pulp and paper industry, Vienna, Austria, pp 27–32Google Scholar
  48. Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process). J Biotechnol 53:163–202CrossRefGoogle Scholar
  49. Call H-P, Call S, Garcia-Lindgren C, Marklund A (2004) Extended lab trials: combined enzymatic delignification and bleaching systems. In: 9th International conference on biotechnology in the pulp and paper industry, 10–14 Oct, Durban, South AfricaGoogle Scholar
  50. Camarero S, García O, Vidal T, Colom J, Del Río JC, Gutiérrez A, Gras JM, Monje R, Martínez MJ, Martínez AT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35(2–3):113–120CrossRefGoogle Scholar
  51. Chakar FS, Ragauskas AJ (2000) The effects of oxidative alkaline extraction stages after laccase HBT and laccaseNHAA treatments-an NMR study of residual lignins. J Wood Chem Technol 20(2):169–184CrossRefGoogle Scholar
  52. Chandra RP, Chakar FS, Allison L, Kim DH, Ragauskas AJ, Elder T (2001) Delving into the fundamental LMS delignification of high kappa kraft pulps. In: 8th International conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki, Finland, p 54Google Scholar
  53. Chauhan S, Choudhury B, Singh SN, Ghosh P (2006) Application of xylanase enzyme of Bacillus coagulans as a prebleaching agent on non-woody pulps. Process Biochem 41(1):226–231CrossRefGoogle Scholar
  54. Cheng X, Chen G, Huang S, Liang Z (2013) Biobleaching effect of crude xylanase from Streptomyces griseorubens LH-3 on eucalyptus kraft pulp. BioResources 8(4):6424–6433CrossRefGoogle Scholar
  55. Ducka I, Pekarovicova A (1995) Ligninases in bleaching of softwood kraft pulp. In: 6th International conference on biotechnology in the pulp and paper industry, 11–15 June, Vienna, AustriaGoogle Scholar
  56. Dwivedi P, Vivikanand V, Pareek N, Sharma A, Singh RP (2010) Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Appl Biochem Biotechnol 160:255–268Google Scholar
  57. Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL (1993) Crystal structure of lignin peroxidase. Proc Natl Acad Sci 90:750–754 (USA)Google Scholar
  58. Egan M (1985) Proceedings of the second annual pulp and paper chemical outlook conference, 12–13 Nov, Montreal. Corpus Information Services Ltd., MontrealGoogle Scholar
  59. Eggert C, Temp V, Eriksson K-EL (1996) The ligninolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158Google Scholar
  60. Ehara K, Tsutsumi Y, Nishida T (2000) Role of tween 80 in biobleaching of unbleached hardwood kraft pulp with manganese peroxidase. J Wood Sci 46(2):137–142CrossRefGoogle Scholar
  61. Eiras KM, Milanez AF, Colodette L (2009) Biobleaching of eucalyptus pulp. In: 42nd Pulp and paper international congress and exhibition, Sao Paulo, Brazil, 26–29 Oct 2009, 8 ppGoogle Scholar
  62. Fagerström R, Tenkanen M, Kruus K, Buchert J (2001) Removal of hexenuronic acid side groups from kraft pulp by laccase/mediator treatment. In: 8th International conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki, Finland, pp 225–230Google Scholar
  63. Farrell R (1987) Use of rldmtm 1–6 and other ligninolytic enzymes. PCT Int Appl WO 87(00):564Google Scholar
  64. Farrell RL, Gelep P, Anillouis A, Javaherian K, Malone TE, Rusche JR, Sadownick BA, Jackson JA (1987a) Sequencing and expression of ligninase cDNA of Phanerochaete chrysosporium. EP 0216080Google Scholar
  65. Farrell RL, Kirk TK, Tien M (1987b) Novel enzymes for degradation of lignin. WO 87/00550Google Scholar
  66. Fillat U, Roncero MB (2009) Biobleaching of high quality pulps with laccase mediator system: influence of treatment time and oxygen supply. Biochem Eng J 44(2–3):193–198Google Scholar
  67. Fu S, Zhan H, Yu H (2000) Preliminary study on biobleaching of Eucalyptus urophylla kraft pulp with laccase-mediator system. China Pulp Pap 19(2):8–15Google Scholar
  68. Fujita K, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1991) Biobleaching of kraft pulp using white-rot fungus IZU-154. Tappi J 74(11):123–127Google Scholar
  69. Fujita K, Kondo R, Sakai K (1993) Biobleaching of softwood kraft pulp with white-rot fungus IZU-154. Tappi J 76(1):81–84Google Scholar
  70. Gamelas JAF, Tavares APM, Evtuguin DYV, Xavier AMB (2005) Oxygen bleaching of kraft pulp with polyoxometalates and laccase applying a novel multi-stage process. J Mol Catal B Enzym 33:57–64CrossRefGoogle Scholar
  71. Gangwar AK, Prakash NT, Prakash RR (2014) Applicability of microbial xylanases in paper pulp bleaching: a review. BioResources 9(2):3733–3754CrossRefGoogle Scholar
  72. Garzillo AMV, Dipaolo S, Burla G, Buonocore V (1992) Differently-induced extracellular phenol oxidases from Pleurotus ostreatus. Phytochemistry 31:3685–3690CrossRefGoogle Scholar
  73. Geng X, Li K (2002) Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Appl Microbiol Biotechnol 60(3):342–346CrossRefGoogle Scholar
  74. Gliese T, Kleemann S, Fischer K (1998) Investigations on mechanism and kinetics of xylanase on prebleaching. Pulp Pap Can 12(99):171–174Google Scholar
  75. Gold MH, Wariishi H, Walli K (1989) Extracellular peroxidases involved in lignin degradation by the white-rot basidiomycete Phanerochaete chrysosporium. In: ACS Symposium series, vol 389, p 127Google Scholar
  76. Gruninger H, Fiechter A (1986) A novel, highly thermostable d-xylanase. Enzyme Microb Technol 8:309–314CrossRefGoogle Scholar
  77. Gubitz G, Haltrich D, Latal B, Steiner W (1997) Mode of depolymerisation of hemicellulose by various mannanases and xylanases in relation to their ability to bleach softwood pulp. Appl Microbiol Biotechnol 47(6):658–662CrossRefGoogle Scholar
  78. Gysin B, Griessmann T (1991) Bleaching wood pulp with enzymes. EP 0418201 A2Google Scholar
  79. Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18CrossRefGoogle Scholar
  80. Hatakka AI, Bocchini P, Vares T, Galletti GC (1997) Production of lignin-degrading enzymes on solid straw medium by Phanerochaete chrysosporium and Ceriporiopsis subvermispora and degradation of the lignocellulosic substrate. In: 1997 Biological sciences symposium, 19–23 Oct, San Francisco, CA, USA, pp 19–23Google Scholar
  81. Henriksson G, Teeri T (2009) Biotechnology in the forest industry. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulp and paper chemistry and technology, vol 1. Wood chemistry and wood biotechnology. Walter de Gruyter, pp 273–300Google Scholar
  82. Herpoel I, Jeller H, Fang G, Petit-Conil M, Bourbonnair R, Robert J-L, Asther M, Sigoillot J-C (2002) Efficient enzymatic delignification of wheat straw pulp by a sequential xylanase-laccase mediator treatment. J Pulp Pap Sci 28(3):67–71Google Scholar
  83. Higuchi T (1989) Mechanism of lignin degradation by lignin peroxidase and laccase of white-rot fungi. In: Lenis NG, Paice MG (eds) Biogenesis and biodegradation of plant cell polymers. ACS Symposium. No. 399, American Chemical Society, pp 482–502Google Scholar
  84. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63CrossRefGoogle Scholar
  85. Higuchi T (1993) Biodegradation mechanism of lignin by white-rot basidiomycetes. J Biotechnol 30(1):1–11CrossRefGoogle Scholar
  86. Ho C, Jurasek L, Paice MG (1990) The effect of inoculum on bleaching of hardwood kraft pulp with Coriolus versicolor. J Pulp Pap Sci 16:J78–J83Google Scholar
  87. Iimori T, Kaneko R, Yoshikawa H, Machida M, Yoshioka H, Murakami K (1994) Screening of pulp bleaching fungi and bleaching activity of newly isolated fungus SKB-1152. Mokuzai Gakkaishi 40(7):733–737Google Scholar
  88. Iimori T, Yoshikawa H, Kaneko R, Miyawaki S, Machida M, Murakami K (1996) Effects of treatment conditions on treatment times for biobleaching by SKB-1152. Mokuzai Gakkaishi 42:313–317Google Scholar
  89. Iimori T, Miyawaki S, Machida M, Murakami K (1998) Biobleaching of unbleached and oxygen-bleached hardwood kraft pulp by culture filtrate containing manganese peroxidase and lignin peroxidase from Phanerochaete chrysosporium. J Wood Sci 44(6):451–456CrossRefGoogle Scholar
  90. Ishimura D, Kondo R, Sakai K, Hirai H (1998) Biobleaching of kraft pulp with mutants from white-rot fungus Phanerochaete sordida YK-624. In: Proceedings of the 7th international conference on biotechnology in the pulp and paper industry, vol B, 16–19 June, Vancouver, BC, Canada, p B237Google Scholar
  91. Jeffries TW (1992) Enzymatic treatments of pulps. In: Rowell RM, Schultz TP, Narayan R (eds) Emerging technologies for materials and chemicals from biomass. ACS Symposium series 476, American Chemical Society, Washington, D.C., pp 313–329Google Scholar
  92. Jimenez L, Martinez C, Maestre F, Lopez F (1996) Biobleaching of pulp from agricultural residues with enzymes. Bioprocess Eng 14(5):261–262CrossRefGoogle Scholar
  93. Jurasek L, Paice MG (1988) Biological treatments of pulps. Biomass 15:103–108CrossRefGoogle Scholar
  94. Jurasek L, Archibald FS, Bourbonnais R, Paice MG, Reed ID (1994) Prospects for redox enzymes to enhance Kraft pulp bleaching. In: Proceedings of the biological sciences symposium, 3–6 Oct, Minneapolis, MN, p 239Google Scholar
  95. Kadimaliev DA, Revin VV, Atykian NA, Samuilov VD (2003) Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus. Prikl Biokhim Mikrobiol 39(5):555–560Google Scholar
  96. Kandioller G, Christov L (2001) Efficiency of Trametes versicolor laccase-mediator systems in pulp delignification and bleaching. In: 8th International conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki, Finland, p 223Google Scholar
  97. Kantelinen A, Hortling BO, Ranua M, Viikari L (1993a) Effects of fungal and enzymatic treatments on isolated lignins and pulp bleachability. Holzforschung 47:29–35CrossRefGoogle Scholar
  98. Kantelinen A, Hortling B, Sundquist J, Linko M, Viikari L (1993b) Proposed mechanism of the enzymatic bleaching of kraft pulp with xylanases. Holzforschung 47:318–324CrossRefGoogle Scholar
  99. Kapoor M, Kapoor RK, Kuhad RC (2007) Differential and synergistic effects of xylanase and laccase mediator system (LMS) in bleaching of soda and waste pulps. J Appl Microbiol 103:305–317CrossRefGoogle Scholar
  100. Katagiri N, Tsutsumi Y, Nishida T (1997) Biobleaching of softwood kraft pulp by white-rot fungi and its related enzymes. J Jpn Wood Res Soc 46(8):678–685Google Scholar
  101. Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulase-free xylanopectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155CrossRefGoogle Scholar
  102. Kawai S, Umezawa T, Shimada M, Higuchi T (1988) Aromatic ring cleavage of 4,6-di (tert-butyl)guaiacol, phenolic lignin model compound by laccase of Coriolus versicolor. FEBS Lett 236:309–311CrossRefGoogle Scholar
  103. Kim DH, Paik KH (2000) Effect of xylanase pre and post treatment on oxygen bleaching of oak kraft pulp. J Ind Eng Chem 6(3):194–200Google Scholar
  104. Kirk TK, Yang HH (1979) Partial delignification of unbleached kraft pulp with ligninolytic fungi. Biotech Lett 1:347–352CrossRefGoogle Scholar
  105. Kirkpatrick N, Palmer JH (1987) Semi-continuous ligninase production using foam-immobilized Phanerochaete chrysosporium. Appl Microbiol Biotechnol 27:129–133CrossRefGoogle Scholar
  106. Kirkpatrick N, Reid ID, Ziomek E, Paice MG (1990a) Biological bleaching of hardwood kraft pulp using Trametes versicolor immobilized in polyurethane foam. Appl Environ Microbiol 33:105–108Google Scholar
  107. Kirkpatrick N, Reid ID, Ziomek E, Paice MG (1990b) Physiology of hardwood kraft pulp bleaching by Coriolus versicolor and use of foam immobilization for the production of mycelium-free bleached pulps. In: Kirk TK, Chang HM (eds) Biotechnology in pulp and paper manufacture. Butterworth, Heinemann, MA, pp 131–136Google Scholar
  108. Ko C-H, Tsai C-H, Tu J, Yang B-Y, Hsieh D-L, Jane W-N, Shih T-L (2011) Identification of Paenibacillus sp. 2S-6 and application of its xylanase on biobleaching. Int Biodeterior Biodegradation 65(2):334–339CrossRefGoogle Scholar
  109. Kondo R, Kurashiki K, Sakai K (1994) In vitro bleaching of hardwood kraft pulp by extracellular enzymes secreted from white-rot fungi in a cultivation system using a membrane filter. Appl Environ Microbiol 60:921–926Google Scholar
  110. Kondo R, Tsuchikawa K, Sakai K (2001) Application of manganese peroxidase to modification of fibers. In: 8th International conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki, Finland, p 70Google Scholar
  111. Kondo R, Li X, Sakai K (2000) Biobleaching of hardwood kraft pulp by a marine fungus and its enzyme. In: Pulp and paper research conference, 28–29 June, Tokyo, Japan, pp 12–17Google Scholar
  112. Lackner R, Srebotnik E, Messner K (1991) Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 178:1092CrossRefGoogle Scholar
  113. Latorre UF, Sacon VM, Bassa A (2008) Selection of commercial xylanases to improve pulp bleaching in Jacarei mill (Votorantim Celulose e Papel). Influence of pH and COD in process efficiency. In: International pulp bleaching conference, 2–5 June 2008, Quebec City, QC, Canada, pp 265–266Google Scholar
  114. Ledoux P, Detroz R, DeBuyl E, Throughton N, Shetty J, Presley JR (1993) Use of bacterial xylanase in chlorine free bleaching sequences. In: Pulping conference, TAPPI proceedings, pp 1057–1065Google Scholar
  115. Lian HL, You JX, Lian ZN (2011) Effect of machanochemistry on biobleaching of wheat straw pulp with laccase/xylanase treatment. In: International Conference on Agricultural and Natural Resources Engineering, Advances in Biomedical Engineering 3–5, p 44–51Google Scholar
  116. Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y (2013) Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol 52(2):91–98CrossRefGoogle Scholar
  117. Luthi E, Jasmat NB, Berquist P (1990) Xylanase from the extremely thermophilic bacterium “Caldocellum saccharolyticum”: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl Environ Microbiol 56:2677–2683Google Scholar
  118. Machii Y, Hirai H, Nishida T (2004) Lignin peroxidase is involved in the biobleaching of manganese-less oxygen-delignified hardwood kraft pulp by white-rot fungi in the solid-fermentation system. FEMS Microbiol Lett 233(2):283–287CrossRefGoogle Scholar
  119. Manimaran A, Kumar KS, Permaul K, Singh S (2009) Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl Microbiol Biotechnol 81(5):887–893CrossRefGoogle Scholar
  120. Manji AH (2006) Extended usage of xylanase enzyme to enhance the bleaching of softwood kraft pulp. Tappi J 5(1):23–26Google Scholar
  121. Martinez AT, Camarero S, Ruiz-Duenas FJ, Heinfling A, Martinez MJ (2000) Studies on microbial and enzymatic applications in paper pulp manufacturing from non-woody plants based on white-rot fungi from the genus Pleurotus. In: 2000 Pulping/process and product quality conference, 5–8 Nov, Boston, MA, USA, 10 ppGoogle Scholar
  122. Mathrani IM, Ahring BK (1992) Thermophilic and alkalophilic xylanases from several Dictyoglomus isolates. Appl Microbiol Biotechnol 38:23–27CrossRefGoogle Scholar
  123. McCarthy AJ, Peace E, Broda P (1985) Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl Microbiol Biotechnol 21:238–244CrossRefGoogle Scholar
  124. Milagres AMF, Medeiros MB, Borges LA (1995) Sequential treatment of eucalyptus kraft pulp with Penicillium janthinellium xylanase and Pleurotus ostreatus laccase. In: 6th International conference on biotechnology in the pulp and paper industry, 11–15 June, Vienna, AustriaGoogle Scholar
  125. Milanez AF, Colodette L (2009) Biobleaching of eucalyptus pulp. In: 42nd pulp and paper international congress and exhibition, Sao Paulo, Brazil, 26–29 Oct 2009, 8 ppGoogle Scholar
  126. Moldes D, Cadena EM, Vidal T (2010) Biobleaching of eucalypt kraft pulp with a two laccase-mediator stages sequence. Bioresour Technol 101(18):6924–6929Google Scholar
  127. Moreira MT, Feijoo G, Sierra-Alvarez R, Lema J, Field JA (1997) Biobleaching of oxygen delignified kraft pulp by several white-rot fungal strains. J Biotechnol 53:237–251CrossRefGoogle Scholar
  128. Moreira MT, Feijoo G, Merter T, Mayorga P, Sierra-Alvarez R, Field JA (1998a) Role of organic acids in the manganese-independent biobleaching system of Bjerkandera sp. strain BOS 55. Appl Environ Microbiol 64(7):2409–2417Google Scholar
  129. Moreira MT, Sierra-Alvarez R, Feijoo G, Field JA (1998b) Evaluation of the manganese requirement for biobleaching by white-rot fungi. In: Proceedings of the 7th international conference on biotechnology in the pulp and paper industry, vol B, 16–19 June, Vancouver, BC, Canada, p B229Google Scholar
  130. Moreira MT, Sierra-Alvarez R, Lema JM, Feijoo G, Field JA (2001) Oxidation of lignin in eucalyptus kraft pulp by manganese peroxidase from Bjerkandera sp. strain BOS55. Bioresour Technol 78(1):71–79CrossRefGoogle Scholar
  131. Murata S, Kondo R, Sakai K, Kashino Y, Nishida T, Takahara Y (1992) Chlorine-free bleaching process of kraft pulp using treatment with the fungus IZU-154. Tappi J 75(12):91–94Google Scholar
  132. Nagar S, Jain RK, Thakur VV, Gupta VK (2013) Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. 3 Biotechnology 3(4):277–285Google Scholar
  133. Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN (2017) BioResources 12(3):5264–5278, 5264Google Scholar
  134. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol 51(6):711–729CrossRefGoogle Scholar
  135. Niku-Paavola ML, Ranua M, Suurnakki A, Kantelinen A (1994) Effects of lignin-modifying enzymes on pine kraft pulp. Bioresour Technol 50:73–77CrossRefGoogle Scholar
  136. Nishida T, Katagiri N, Tsutsumi Y (1995) New analysis of lignin-degrading enzymes related to biobleaching of kraft pulp by white-rot fungi. In: 6th International conference on biotechnology in the pulp and paper industry, 11–15 June, Vienna, AustriaGoogle Scholar
  137. Olsen WL, Slocomb JP, Gallagher HP, Kathleen BA (1989) Enzymatic delignification of lignocellulosic material. EP 0,345,715 A1Google Scholar
  138. Olsen WL, Gallagher HP, Burris AK, Bhattacharjee SS, Slocomb JP, Dewitt DM (1991) Enzymatic delignification of lignocellulosic material. EP 406, 617Google Scholar
  139. Paice M (2005) Enzyme application in pulp and paper manufacturing. In: Lakehead University Symposium, 27 Sept 2005Google Scholar
  140. Paice M, Zhang X (2005) Enzymes find their niche. Pulp & Pap Can 106(6):17–20Google Scholar
  141. Paice MG, Jurasek L, Ho C, Bourbonnais R, Archibald FS (1989) Direct biological bleaching of hardwood kraft pulp with the fungus Coriolus versicolor. Tappi J 72(5):217–221Google Scholar
  142. Paice MG, Gurnagul N, Page DH, Jurasek L (1992) Mechanism of hemicellulose directed prebleaching of kraft pulp. Enzyme Microb Technol 14:272–276CrossRefGoogle Scholar
  143. Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L (1993) Manganese peroxidase produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl Environ Microbiol 59:260–265Google Scholar
  144. Paice MG, Bourbonnais R, Reid ID (1995a) Bleaching kraft pulps with oxidative enzymes and alkaline hydrogen peroxide. Tappi J 78(9):161–170Google Scholar
  145. Paice MG, Bourbonnais R, Reid ID, Archibald FS, Jurasek L (1995b) Oxidative bleaching enzymes. J Pulp Pap Sci 21:J280–J284Google Scholar
  146. Paice MG, Bourbonnais R, Renaud S, Amann M, Candussio A, Rochefort D, Leech D, Labonte S, Sacciadis G (2001) Laccase/mediator catalysed delignification: trials with new mediators. In: 8th International conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki, Finland, p 48Google Scholar
  147. Paszczynski A, Huynh V-B, Crawford R (1985) Enzymatic activities of an extracellular manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37–40CrossRefGoogle Scholar
  148. Pazukhina GA, Soloviev VA, Malysheva ON (1995) Bleaching of kraft pulp with filtrates of white-rot fungi. In: 6th International conference on biotechnology in the pulp and paper industry, 11–15 June, Vienna, AustriaGoogle Scholar
  149. Pekarovicova A, Kozankova J, Mikutasova M, Jankovic P, Pekarovic J (1992) SEM study of xylanase pretreated pulps. In: Visser J, Beldman G, Kustersvan Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier Science Publishers, Amsterdam, pp 559–564Google Scholar
  150. Pellinen J, Abuhasan J, Joyce TW, Chang HM (1989) Biological delignification of pulp by Phanerochaete chrysosporium. J Biotechnol 10:161–170CrossRefGoogle Scholar
  151. Perttula M, Ratto M, Konradsdottir M, Kristijansson JK, Viikari L (1993) Xylanases of thermophilic bacteria from Icelandic hot springs. Appl Microbiol Biotechnol 38:592–595CrossRefGoogle Scholar
  152. Pham PL, Alric I, Delmas M (1995) Incorporation of xylanase in total chlorine free bleach sequences using ozone and hydrogen peroxide. Appita J 48(3):213–217Google Scholar
  153. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591CrossRefGoogle Scholar
  154. Poppius-Levlin K, Wang W, Ranua M, Niku-Paavola ML, Viikari L (1997) Biobleaching of chemical pulps by laccase/mediator systems. In: Proceedings of Tappi biological science symposium, pp 329–333Google Scholar
  155. Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem 268(6):4429–4434Google Scholar
  156. Ratanachomsri U, Sriprang R, Sornlek W, Buaban B, Champreda V, Tanapongpipat S, Eurwilaichitr L (2006) Thermostable xylanase from Marasmius sp.: purification and characterization. J Biochem Mol Biol 39(1):105–110Google Scholar
  157. Reid ID, Paice MG (1994a) Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiol Rev 13:369–376CrossRefGoogle Scholar
  158. Reid ID, Paice MG (1994b) Effect of residual lignin type and amount on bleaching of kraft pulp by Trametes versicolor. Appl Environ Microbiol 60(5):1395–1400Google Scholar
  159. Reid ID, Paice MG, Ho C, Jurasek L (1990) Biological bleaching of softwood kraft pulp with the fungus Trametes versicolor. Tappi J 73(8):149–153Google Scholar
  160. Reid ID, Bourbolnnais R, Paice MG (2010) Biopulping and biobleaching. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: advances in chemistry, chapter 15, pp 521–554Google Scholar
  161. Reinhammer B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes. CRC, Boca RatonGoogle Scholar
  162. Roncero MB, Torres AL, Colom JF, Vidal T (1999) Study the influence of xylanase on the fibre surfaces by SEM. In: Proceedings of microscopy as a tool in pulp and paper research and development, Stockholm, Sweden, pp 27–30Google Scholar
  163. Roncero MB, Torres AL, Colom JF, Vidal T (2000) Effects of xylanase treatment on fibre morphology in totally chlorine free bleaching (TCF) of eucalyptus pulp. Process Biochem 36(1):45–50CrossRefGoogle Scholar
  164. Roncero MB, Torres AL, Colom JF, Vidal T (2003) Effect of xylanase on ozone bleaching kinetics and properties of eucalyptus kraft pulp. J Chem Technol Biotechnol 78(10):1023–1031CrossRefGoogle Scholar
  165. Roncero MB, Torres AL, Colom JF, Vidal T (2005) The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresour Technol 96(1):21–30CrossRefGoogle Scholar
  166. Roy BP, Archibald F (1993) Effects of kraft pulp and lignin on Trametes versicolor carbon metabolism. Appl Environ Microbiol 59(6):1855–1863Google Scholar
  167. Saleem M, Tabassum MR, Yasmin R, Imran M (2009) Potential of xylanase from thermophilic Bacillus sp. XTR-10 in biobleaching of wood kraft pulp. Int Biodeterior Biodegradation 33(8):1119–1124CrossRefGoogle Scholar
  168. Salles BC, Medeiros RG, Bao SN, Silva FG, Filho EXF (2005) Effect of cellulase free xylanases from Acrophialophora nainiana and Humicola grisea var. thermoidea on eucalyptus kraft pulp. Process Biochem 40(1):343–349CrossRefGoogle Scholar
  169. Sariaslani FS (1989) Microbial enzymes for oxidation of organic molecules. Crit Rev Biotechnol 9:171–257CrossRefGoogle Scholar
  170. Sealey JE, Ragaukas AJ, Runge TM (1997) Biobleaching of kraft pulps with laccase and hydroxybenzotriazole. In: Proceedings of Tappi biological science symposium, pp 339–342Google Scholar
  171. Senior DJ, Hamilton J (1991) Use of xylanase to decrease the formation of AOX in kraft pulp bleaching. In: Proceedings environment conference of the technical section, 8–10 Oct, Canadian Pulp and Paper Association, Quebec, Canada, pp 63–67Google Scholar
  172. Senior DJ, Hamilton J (1992a) Bleaching with xylanases brings biotechnology to reality. Pulp Pap 66(9):111–114Google Scholar
  173. Senior DJ, Hamilton J (1992b) Reduction in chlorine use during bleaching of kraft pulp following xylanase treatment. Tappi J 75(11):125–130Google Scholar
  174. Senior DJ, Hamilton J (1992c) Use of xylanase to decrease the formation of AOX in kraft pulp bleaching. J Pulp Paper Sci 18(5):J165–J168Google Scholar
  175. Senior DJ, Hamilton J (1993) Xylanase treatment for the bleaching of softwood kraft pulps: the effect of chlorine dioxide substitution. Tappi J 76(8):200–206Google Scholar
  176. Senior DJ, Hamilton J, Bernier RL Jr (1992) Use of Streptomyces lividans xylanase for biobleaching of kraft pulps. In: Visser J, Beldmann G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Progress in biotechnology, vol 7. Elsevier, Amsterdam, The Netherlands, p 555Google Scholar
  177. Senior DJ, Hamilton J, Taiplus P, Torvinen J (1999) Enzyme use can lower bleaching costs, aid ECF conversions. Pulp Pap 73(7):59–62Google Scholar
  178. Senior DJ, Bernhardt SA, Hamilton J, Lundell R (2000) Mill implementation of enzymes in pulp manufacture. In: Biological science symposium, 19–23 Oct, San Francisco, CA, USA, p 163Google Scholar
  179. Sharma A, Adhikari S, Satyanarayana T (2007) Alkali thermostable and cellulase free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23(4):483–490CrossRefGoogle Scholar
  180. Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta R, Kuhad RC (2014) Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol 169:96–102CrossRefGoogle Scholar
  181. Sharma P, Sood C, Singh G, Capalash N (2015) An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J Clean Prod 87:966–970CrossRefGoogle Scholar
  182. Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel CA, Fournel A, Sigoillot JC, Asther M (2004) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64(3):346–352CrossRefGoogle Scholar
  183. Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Pérez-Boada M, Martínez MJ, Sigoillot JC, Asther M, Colom JF, Martínez AT (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115(4):333–343CrossRefGoogle Scholar
  184. Simeonova G, Sjodahl R, Ragnar M, Lindstrom ME, Henriksson G (2007) On the effect of a xylanase post treatment as a means of reducing the yellowing of bleached hardwood kraft pulp. Nord Pulp Pap Res J 22(2):172–176CrossRefGoogle Scholar
  185. Singh G, Capalash N, Kaur K, Puri S, Sharma P (2016) Enzymes: applications in pulp and paper industry. In: Dhillon GS, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Academic Press, pp 157–172Google Scholar
  186. Skerker PS, Labbauf MM, Farrell RL, Beerwan N, McCarthy P (1992) Practical bleaching using xylanases: laboratory and mill experience with Cartazyme HS-10 in reduced and chlorine free bleach sequences. In: Tappi pulping conference, Boston, 1–5 Nov. Tappi press, Atlanta, GA, p 27Google Scholar
  187. Skjold-Jorgensen S, Munk N, Pederson LS (1992) Recent progress within the application of xylanases for boosting the bleachability of kraft pulp. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. Uni Publishers Co. Ltd. Tokyo, Japan, pp 93–99Google Scholar
  188. Sousa JI, Moura AI, Evtuguin DV, Carvalho MGV (2015) Enzymatic treatment applied as a final stage in E. globulus kraft pulp bleachingGoogle Scholar
  189. Spence K, Tucker J, Hart PW (2009) Comparison of various hardwood kraft pulp pre-bleaching techniques. Tappi J 8(4):10–14Google Scholar
  190. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64CrossRefGoogle Scholar
  191. Sundaramoorthy S, Kishi K, Gold MH, Poulos TL (1994) Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J Mol Biol 238(5):845–856CrossRefGoogle Scholar
  192. Suominen P, Mantyla A, Saarelainen R, Paloheimo M, Fagerstrom P, Parkkinen E, Nevalainen H (1992) Genetic engineering of Trichoderma reesei to produce suitable enzyme combinations for applications in the pulp and paper industry. In: Proceedings of the 5th international conference on biotechnology in the pulp and paper industry, 27–30 May, Kyoto, Japan, p 439Google Scholar
  193. Suurnakki A, Tenkanen M, Buchert J, Viikari L (1997) Hemicellulases in the bleaching of chemical pulps. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 57. Springer, Berlin, pp 261–287Google Scholar
  194. Tan LUL, Mayers P, Saddler JN (1987) Purification and characterization of a thermostable xylanase from a thermophilic fungus Thermoascus aurantiacus. Can J Microbiol 33:689–694CrossRefGoogle Scholar
  195. Tavares APM, Gamelas JAF, Gaspar A, Evtuguin DV, Xavier AMB (2004) A novel approach for the oxidative catalysis employing polyoxometalate-laccase system: application to the oxygen bleaching of kraft pulp. Catal Commun 5:485CrossRefGoogle Scholar
  196. Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine based-chemicals during CEH and ECF bleaching. BioResources 7(2):2220–2235CrossRefGoogle Scholar
  197. Thibault L, Tolan J, White T, Yee E, April R, Sung W (1999) Use of an engineered xylanase enzyme to improve ECF bleaching at Weyerhaeuser Prince Albert. In: 85th Annual meeting, 26–29 Jan, Montreal, Canada, p B263Google Scholar
  198. Tolan JS (1992) Mill implementation of enzyme treatment to enhance bleaching. In: Proceedings of 78th CPPA annual meeting, 28–29 Jan, Montreal, Canada, pp A163–A168Google Scholar
  199. Tolan JS (2001) How a mill can get more benefit out of its xylanase treatment. In: 8th International conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki, Finland, p 81Google Scholar
  200. Tolan JS, Canovas RV (1992) The use of enzymes to decrease the chlorine requirements in pulp bleaching. Pulp Pap Can 93(5):39–42Google Scholar
  201. Tolan JS, Collins J (2004) Use of xylanase in the production of bleached, unrefined pulp at Marathon Pulp Inc. Pulp & Paper Canada 105(7):T167–169. Google Scholar
  202. Tolan JS, Guenette M (1997) Using enzymes in pulp bleaching: mill applications. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 57. Springer, Berlin, pp 288–310Google Scholar
  203. Tolan JS, Olson D, Dines RE (1996) Survey of mill usage of xylanase In: Jeffries TW, Viikari L (eds) Enzymes for pulp and paper processing. ACS Symposium series 655, pp 25–35Google Scholar
  204. Torres AL, Vidal T, Colom JF (1998) Eucalyptus pulp bleaching with biotechnology: research synthesis. Revue ATIP 52(4)Google Scholar
  205. Tran AV, Chambers RP (1987) Delignification of an unbleached hardwood pulp by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 25:484–490CrossRefGoogle Scholar
  206. Tsuchikawa K, Kondo R, Sakai K (1995) Application of ligninolytic enzymes to bleaching of kraft pulp II: totally chlorine-free bleaching process with the introduction of enzyme treatment with crude enzymes secreted from Phanerochaete sordida YK-624. Jpn Tappi J 49:1332–1337CrossRefGoogle Scholar
  207. Umezawa T, Higuchi T (1989) Cleavage of aromatic ring and β-4-O-bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett 242:325–330CrossRefGoogle Scholar
  208. Vaheri M, Miiki K (1991) Redox enzyme treatment in multistage bleaching of pulp. EP 0,408,803 A1Google Scholar
  209. Vaheri M, Piirainen O (1992) Bleaching of pulp in presence of oxidizing enzyme and transition metal compound. WO 92/09741Google Scholar
  210. Valchev V, Valchev V, Christova E (1998) Introduction of an enzyme stage in bleaching of hardwood Kraft pulp. Cellul Chem Technol 32(5–6):457–462Google Scholar
  211. Valchev I, Valchev I, Ganev I (2000) Improved elemental chlorine free bleaching of hardwood kraft pulp. Cellul Chem Technol 33(1–2):61–66Google Scholar
  212. Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100(6):2032–2039Google Scholar
  213. Valls C, Gallardo O, Vidal T, Pastor FIJ, Diaz P, Roncero MB (2010) New xylanases to obtain modified eucalypt fibres with high-cellulose content. Bioresour Technol 101(19):7439–7445Google Scholar
  214. Vares T, Almondros G, Galletti GC, Hatakka A, Dorado J, Bocchini P, Martinez AT (1997) Effect of ligninolytic enzymes and mediators on paper making properties and chemical composition of semichemical wheat straw pulp. In: 1997 Biological sciences symposium, 19–23 Oct, San Francisco, CA, USA, pp 405–412Google Scholar
  215. Vasdev K, Kuhad RC (1994) Decolourization of poly R-478(polyvinylamine sulfonate anthrapyridone) by Cyathus bulleri. Folia Microbiol 39(1):61–70CrossRefGoogle Scholar
  216. Viikari L, Ranua M, Kantelinen A, Sundquist J, Linko M (1986) Bleaching with enzymes. In: Proceedings of the 3rd international conference on biotechnol in the pulp and paper industry, Stockholm, Sweden, pp 67–69Google Scholar
  217. Viikari L, Kantelinen A, Poutanen K, Ranua M (1990) Characterization of pulps treated with hemicellulolytic enzymes prior to bleaching. In: Kirk TK, Chang HM (eds) Biotechnology in pulp and paper manufacture. Butterworth-Heinemann, Boston, p 145Google Scholar
  218. Viikari L, Tenkanen M, Buchert J, Ratto M, Bailey M, Siika-Aho M, Linko M (1993) Hemicellulases for industrial applications. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, pp 131–182Google Scholar
  219. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to industry. FEMS Microbiol Rev 13:335–350CrossRefGoogle Scholar
  220. Viikari L, Poutanen K, Tenkanen M, Tolan JS (2002) Hemicellulases. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, Chichester (Update. Electronic release.)Google Scholar
  221. Viikari L, Suurnakki A, Gronqvist S, Raaska L, Ragauskas A (2009) Forest products: biotechnology in pulp and paper processing. In: Encyclopedia of microbiology, 3rd edn, pp 80–94Google Scholar
  222. Wang L, Jiang LK, Argyropoulos DS (1997) Isolation and characterization of lignin extracted from softwood kraft pulp after xylanase treatment. J Pulp Pap Sci 23(2):47–51Google Scholar
  223. Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275CrossRefGoogle Scholar
  224. Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by lignin peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23699Google Scholar
  225. Werthemann D (1993) Prebleaching of Pinus radiata pulp using enzymes—technology to reduce AOX. Jpn J Pap Technol 10:15–17Google Scholar
  226. White NA, Body L (1992) Differential extracellular enzyme production in colonies of Coriolus versicolor, Phlebia radiata and Phlebia rufa: effect of gaseous regime. J Gen Microbiol 138(12):2589–2595CrossRefGoogle Scholar
  227. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-Xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–315Google Scholar
  228. Wong KKY, Nelson SL, Saddler JN (1996) Xylanase treatment for the peroxide bleaching of oxygen delignified kraft pulps derived from three softwood species. J Biotechnol 48(1–2):137–145CrossRefGoogle Scholar
  229. Wong KKY, Kibblewhite RP, Signal FA (1999) Effect of xylanase and dosage on the refining properties of unbleached softwood kraft pulp. J Wood Chem Technol 19(3):203–212CrossRefGoogle Scholar
  230. Wong KKY, Richardson JD, Mansfield SD (2000) Enzymatic treatment of mechanical pulp fibers for improving papermaking properties. Biotechnol Prog 16(6):1025–1029CrossRefGoogle Scholar
  231. Wroblewska H, Zielinski MH (1995) Biodelignification of beech and birch pulpwood by selected white-rot fungi. In: 6th International conference on biotechnology in the pulp and paper industry, 11–15 June, Vienna, AustriaGoogle Scholar
  232. Xu H, Scott GM, Jiang F, Kelly C (2010a) Recombinant manganese peroxidise (rMNP) from Pichia pastoris. Part 1: kraft pulp delignification. Holzforschung 64(2):137–143Google Scholar
  233. Xu H, Scott GM, Jiang F, Kelly C (2010b) Recombinant manganese peroxidise (rMnP) from Pichia pastoris. Part 2: application in TCF and ECF bleaching. Holzforschung 64(2):145–151CrossRefGoogle Scholar
  234. Yang JL, Eriksson K-EL (1992) Use of hemicellulolytic enzymes as one stage in bleaching of Kraft pulps. Holzforschung 46(6):481–488CrossRefGoogle Scholar
  235. Yang HM, Yao B, Fan YL (2005) Recent advances in structures and relative enzyme properties of xylanase. FEMS Microbiol Rev 21(1):6–11Google Scholar
  236. Yllner S, Ostberg K, Stockmann L (1957) A study of the removal of the constituents of pine wood in the sulphate process using a continuous liquor flow method. Svensk Papperstidn 60:795–802Google Scholar
  237. Zhan H, Yue B, Hu W, Huang W (2000) Kraft reed pulp TCF bleaching with enzyme treatment. Cellul Chem Technol 33(1–2):53–60Google Scholar
  238. Ziomek E, Kirkpatrick N, Reid ID (1991) Effect of polydimethylsiloxane oxygen carriers on the biological bleaching of hardwood kraft pulp by Trametes versicolor. Appl Microbiol Biotechnol 35:669–673CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Pulp and Paper ConsultantKanpurIndia

Personalised recommendations