Skip to main content

Malware Detection with Convolutional Neural Network Using Hardware Events

  • Conference paper
  • First Online:
Computer Engineering and Technology (NCCET 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 600))

Included in the following conference series:

Abstract

Detection of malicious programs (i.e., malwares) is a great challenge due to increasing amount and variety of attacks. Recent works have shown that machine learning, especially neural network, performs well in malware detection. In this paper, convolution neural network (CNN) is used to build the malware classification model. Different from other works, our work uses hardware events to generate the feature image of programs. These hardware events, such as cache miss rate, branch misprediction rate, can be collected from the performance counter in the Intel CPUs. We train CNN with kinds of data sizes and kernel sizes, and evaluate the result by the area under a receiver operating characteristics (ROC) curve (AUC). The results show the proposed classification model can achieve AUC = 0.9973 in best case and the influence by the data size or kernel size is very little. Moreover, by comparison with other CNNs trained with software-based features, it is indicated that the proposed model has higher accuracy than the other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The AV-TEST Institute. http://www.av-test.org/en/statistics/malware/. Accessed 25 June 2017

  2. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behavior. In: Proceedings of the 1st India Software Engineering Conference, pp. 5–14. ACM (2008)

    Google Scholar 

  3. Das, S., Xiao, H., Liu, Y., et al.: Online malware defense using attack behavior model. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1322–1325. IEEE (2016)

    Google Scholar 

  4. Kapoor, A., Dhavale, S.: Control flow graph based multiclass malware detection using bi-normal separation. Def. Sci. J. 66(2), 138–145 (2016)

    Article  Google Scholar 

  5. Tobiyama, S., Yamaguchi, Y., Shimada, H., et al.: Malware detection with deep neural network using process behavior. In: Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 577–582. IEEE (2016)

    Google Scholar 

  6. Intel VTune Amplifier 2016. https://software.intel.com/en-us/intel-vtune-amplifier-xe. Accessed 25 June 2017

  7. Cesare, S., Xiang, Y.: Classification of malware using structured control flow. In: Eighth Australasian Symposium on Parallel and Distributed Computing, pp. 61–70. Australian Computer Society, Inc. (2010)

    Google Scholar 

  8. Cesare, S., Xiang, Y.: Malware variant detection using similarity search over sets of control flow graphs. In: IEEE International Conference on Trust, Security and Privacy in Computing and Communications, vol. 21, pp. 181–189. IEEE (2011)

    Google Scholar 

  9. Wu, W.C., Hung, S.H.: DroidDolphin: a dynamic Android malware detection framework using big data and machine learning. In: Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems. pp. 247–252. ACM (2014)

    Google Scholar 

  10. Yeh, C.W., Yeh, W.T., Hung, S.H., et al.: Flattened data in convolutional neural networks: using malware detection as case study. In: Proceedings of the International Conference on Research in Adaptive and Convergent Systems. pp. 130–135. ACM (2016)

    Google Scholar 

  11. Das, S., Liu, Y., Zhang, W., et al.: Semantics-based online malware detection: towards efficient real-time protection against malware. IEEE Trans. Inf. Forensics Secur. 11(2), 289–302 (2016)

    Article  Google Scholar 

  12. Khasawneh, K.N., Ozsoy, M., Donovick, C., Abu-Ghazaleh, N., Ponomarev, D.: Ensemble learning for low-level hardware-supported malware detection. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 3–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5_1

    Chapter  Google Scholar 

  13. Tang, A., Sethumadhavan, S., Stolfo, Salvatore J.: Unsupervised anomaly-based malware detection using hardware features. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 109–129. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11379-1_6

    Chapter  Google Scholar 

  14. Kompalli, S.: Using existing hardware services for malware detection. In: Security and Privacy Workshops (SPW), pp. 204–208. IEEE (2014)

    Google Scholar 

  15. Guide, P.: Intel 64 and IA-32 Architectures Software Developers Manual. Volume 3B: System programming Guide, Part 2. Chaps. 18, 19 (2011)

    Google Scholar 

  16. Hqx, https://code.google.com/archive/p/hqx/. Accessed 25 June 2017

  17. VirusShare. https://virusshare.com/. Accessed 25 June 2017

  18. MiBench Version 1.0. http://vhosts.eecs.umich.edu/mibench//. Accessed 25 June 2017

  19. MediaBench Consortium. http://mathstat.slu.edu/~fritts/mediabench/. Accessed 25 June 2017

  20. Training LeNet on MNIST with Caffe. http://caffe.berkeleyvision.org/gathered/examples/mnist.html. Accessed 25 June 2017

  21. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

The work was supported in part by the National Nature Science Foundation of China, 61402321, by Natural Science Foundation of Tianjin, 15JCQNJC00100 and Tianjin Key Laboratory of Advanced Networking (TANK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tenghai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, W., Wang, T., Wei, J. (2018). Malware Detection with Convolutional Neural Network Using Hardware Events. In: Xu, W., Xiao, L., Li, J., Zhang, C., Zhu, Z. (eds) Computer Engineering and Technology. NCCET 2017. Communications in Computer and Information Science, vol 600. Springer, Singapore. https://doi.org/10.1007/978-981-10-7844-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7844-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7843-9

  • Online ISBN: 978-981-10-7844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics