Colorimetric Sandwich Assays for Nucleic Acid Detection

Chapter

Abstract

Colorimetric sandwich assay has attracted wide interests in detection of nucleic acid due to the advantages of convenience and visibility. In this chapter, we summarized the development of colorimetric sandwich assay employed nanoparticles-, traditional enzyme-, and DNAzyme-based sensor, aiming at providing a general guide for designing colorimetric sandwich assay for the detection of nucleic acid. Furthermore, we discussed the challenges in the development of colorimetric sandwich assay regarding sensitivity and stability, thus offering further opportunities to develop more of robust colorimetric sandwich assay for the detection of nucleic acid.

Keywords

Colorimetric sandwich assay Nucleic acid Detection Nanoparticles Traditional enzyme DNAzyme Sensitivity Stability 

References

  1. 1.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  2. 2.
    Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefGoogle Scholar
  3. 3.
    Zhou W, Gao X, Liu DB, Chen XY (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636CrossRefGoogle Scholar
  4. 4.
    Chen J, Qiu HD, Zhang ML, Gu TN, Shao SJ, Huang Y, Zhao SL (2015) Hairpin assembly-triggered cyclic activation of a DNA machine for label-free and ultrasensitive chemiluminescence detection of DNA. Biosens Bioelectron 68:550–555CrossRefGoogle Scholar
  5. 5.
    Lu SS, Hu T, Wang S, Sun J, Yang XR (2017) Ultra-sensitive colorimetric assay system based on the hybridization chain reaction-triggered enzyme cascade amplification. ACS Appl Mater Interfaces 9:167–175CrossRefGoogle Scholar
  6. 6.
    Zhao QL, Zhang Z, Xu L, Xia T, Li N, Liu JL, Fang XH (2014) Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection. Anal Bioanal Chem 406:2949–2955CrossRefGoogle Scholar
  7. 7.
    Chen XP, Zhou DD, Shen HW, Chen H, Feng WL, Xie GM (2016) A universal probe design for colorimetric detection of single-nucleotide variation with visible readout and high specificity. Sci Rep 6:20257CrossRefGoogle Scholar
  8. 8.
    Long YY, Zhou CS, Wang CM, Cai HL, Yin CY, Yang QF, Xiao D (2016) Ultrasensitive visual detection of HIV DNA biomarkers via a multi-amplification nanoplatform. Sci Rep 6:23949CrossRefGoogle Scholar
  9. 9.
    Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, Wu ZS (2017) Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 90:314–320CrossRefGoogle Scholar
  10. 10.
    Xu JG, Qian J, Li HL, Wu ZS, Shen WY, Jia L (2016) Intelligent DNA machine for the ultrasensitive colorimetric detection of nucleic acids. Biosens Bioelectron 75:41–47CrossRefGoogle Scholar
  11. 11.
    Song GT, Chen CE, Ren JS, Qu XG (2009) A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano 3:1183–1189CrossRefGoogle Scholar
  12. 12.
    Pinijsuwan S, Shipovskov S, Surareungchai W, Ferapontova EE, Gothelf KV (2011) Development of a lipase-based optical assay for detection of DNA. Org Biomol Chem 9:6352–6356CrossRefGoogle Scholar
  13. 13.
    Xie XJ, Xu W, Liu XG (2012) Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res 45:1511–1520CrossRefGoogle Scholar
  14. 14.
    Cordray MS, Amdahl M, Richards-Kortum RR (2012) Gold nanoparticle aggregation for quantification of oligonucleotides: optimization and increased dynamic range. Anal Biochem 431:99–105CrossRefGoogle Scholar
  15. 15.
    Li HB, Wu ZS, Shen ZF, Shen GL, Yu RQ (2014) Architecture based on the integration of intermolecular G-quadruplex structure with sticky-end pairing and colorimetric detection of DNA hybridization. Nanoscale 6:2218–2227CrossRefGoogle Scholar
  16. 16.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  17. 17.
    Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760CrossRefGoogle Scholar
  18. 18.
    Nguyen HK, Southern EM (2000) Minimising the secondary structure of DNA targets by incorporation of a modified deoxynucleoside: implications for nucleic acid analysis by hybridisation. Nucleic Acids Res 28:3904–3909CrossRefGoogle Scholar
  19. 19.
    Ishibashi M, Arakawa T, Philo JS, Sakashita K, Yonezawa Y, Tokunaga H, Tokunaga M (2002) Secondary and quaternary structural transition of the halophilic archaeon nucleoside diphosphate kinase under high- and low-salt conditions. FEMS Microbiol Lett 216:235–241CrossRefGoogle Scholar
  20. 20.
    Tan ZJ, Chen SJ (2006) Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length. Biophys J 90:1175–1190CrossRefGoogle Scholar
  21. 21.
    Menhaj AB, Smith BD, Liu JW (2012) Exploring the thermal stability of DNA-linked gold nanoparticles in ionic liquids and molecular solvents. Chem Sci 3:3216–3220CrossRefGoogle Scholar
  22. 22.
    Zu YB, Ting AL, Yi GS, Gao ZQ (2011) Sequence-selective recognition of nucleic acids under extremely low salt conditions using nanoparticle probes. Anal Chem 83:4090–4094CrossRefGoogle Scholar
  23. 23.
    Shen W, Deng HM, Gao ZQ (2012) Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA. J Am Chem Soc 134:14678–14681CrossRefGoogle Scholar
  24. 24.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650CrossRefGoogle Scholar
  25. 25.
    Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74:1624–1628CrossRefGoogle Scholar
  26. 26.
    Guo LH, Xu Y, Ferhan AR, Chen GN, Kim DH (2013) Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc 135:12338–12345CrossRefGoogle Scholar
  27. 27.
    Le Goff GC, Blum LJ, Marquette CA (2011) Enhanced colorimetric detection on porous microarrays using in situ substrate production. Anal Chem 83:3610–3615CrossRefGoogle Scholar
  28. 28.
    Wu Z, Wu ZK, Tang H, Tang LJ, Jiang JH (2013) Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay. Anal Chem 85:4376–4383CrossRefGoogle Scholar
  29. 29.
    Garcia J, Zhang Y, Taylor H, Cespedes O, Webb ME, Zhou DJ (2011) Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale 3:3721–3730CrossRefGoogle Scholar
  30. 30.
    Su X, Teh HF, Lieu XH, Gao ZQ (2007) Enzyme-based colorimetric detection of nucleic acids using peptide nucleic acid-immobilized microwell plates. Anal Chem 79:7192–7197CrossRefGoogle Scholar
  31. 31.
    Zhang N, Appella DH (2007) Colorimetric detection of anthrax DNA with a peptide nucleic acid sandwich-hybridization assay. J Am Chem Soc 129:8424–8425CrossRefGoogle Scholar
  32. 32.
    Li J, Song SP, Liu XF, Wang LH, Pan D, Huang Q, Zhao Y, Fan CH (2008) Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Adv Mater 20:497–498CrossRefGoogle Scholar
  33. 33.
    Li J, Song SP, Li D, Su Y, Huang Q, Zhao Y, Fan CH (2009) Multi-functional crosslinked Au nanoaggregates for the amplified optical DNA detection. Biosens Bioelectron 24:3311–3315CrossRefGoogle Scholar
  34. 34.
    Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW (2014) Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. Angew Chem Int Ed 53:7183–7187CrossRefGoogle Scholar
  35. 35.
    Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165CrossRefGoogle Scholar
  36. 36.
    Yan YR, Shen B, Wang H, Sun X, Cheng W, Zhao H, Ju HX, Ding SJ (2015) A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation. Analyst 140:5469–5474CrossRefGoogle Scholar
  37. 37.
    Yang XH, Wang Q, Wang KM, Tan WH, Li HM (2007) Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. Biosens Bioelectron 22:1106–1110CrossRefGoogle Scholar
  38. 38.
    D’Agata R, Corradini R, Grasso G, Marchelli R, Spoto G (2008) Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. ChemBioChem 9:2067–2070CrossRefGoogle Scholar
  39. 39.
    Deng MG, Zhang D, Zhou YY, Zhou X (2008) Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. J Am Chem Soc 130:13095–13102CrossRefGoogle Scholar
  40. 40.
    Kolpashchikov DM (2008) Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 130:2934–2935CrossRefGoogle Scholar
  41. 41.
    Li T, Dong SJ, Wang EK (2007) Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA. Chem Commun 4209–4211Google Scholar
  42. 42.
    Li T, Wang E, Dong SJ (2008) Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label. Chem Commun 5520–5522Google Scholar
  43. 43.
    Nakayama S, Sintim HO (2009) Colorimetric split G-quadruplex probes for nucleic acid sensing: improving reconstituted DNAzyme’s catalytic efficiency via probe remodeling. J Am Chem Soc 131:10320–10333CrossRefGoogle Scholar
  44. 44.
    Travascio P, Witting PK, Mauk AG, Sen D (2001) The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc 123:1337–1348CrossRefGoogle Scholar
  45. 45.
    Liang D, You W, Yu Y, Geng Y, Lv F, Zhang B (2015) A cascade signal amplification strategy for ultrasensitive colorimetric detection of BRCA1 gene. RSC Adv 5:27571–27575CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations