Advertisement

Introduction

  • Xiaojin Zhang
  • Fan Xia
Chapter

Abstract

The sandwich assays are one of the mainstays in the fields of clinical diagnostics, molecular detection, and environmental monitoring due to their high specificity and good sensitivity for the detection of analytes. Owing to the development of chemistry and material science, the sandwich assays have been developed vigorously with thousands of published papers to date. To further improve the sensitivity, supersandwich assays emerge as the times require. In this chapter, we will introduce the sandwich assays and briefly discuss the applications of the sandwich assays in the detection of proteins, nucleic acids, small molecules, ions, and cells as well as supersandwich assays. The discussion in detail can be found in subsequent chapters.

Keywords

Sandwich assays Detection of analytes Supersandwich assays High specificity Good sensitivity 

References

  1. 1.
    Zhao LX, Sun L, Chu XG (2009) Chemiluminescence immunoassay. TrAC-trends. Anal Chem 28:404–415Google Scholar
  2. 2.
    Fu XL, Chen LX, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89:124–137CrossRefGoogle Scholar
  3. 3.
    Pei XM, Zhang B, Tang J, Liu BQ, Lai WQ, Tang DP (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18CrossRefGoogle Scholar
  4. 4.
    Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRefGoogle Scholar
  5. 5.
    Liu R, Zhang SX, Wei C, Xing Z, Zhang SC, Zhang XR (2016) Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res 49:775–783CrossRefGoogle Scholar
  6. 6.
    Yin YM, Cao Y, Xu YY, Li GX (2010) Colorimetric immunoassay for detection of tumor markers. Int J Mol Sci 11:5078–5095CrossRefGoogle Scholar
  7. 7.
    Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507CrossRefGoogle Scholar
  8. 8.
    Fojta M, Danhel A, Havran L, Vyskocil V (2016) Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC-trends Anal Chem 79:160–167CrossRefGoogle Scholar
  9. 9.
    Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44:1687–1702CrossRefGoogle Scholar
  10. 10.
    Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15:15684–15716CrossRefGoogle Scholar
  11. 11.
    Teste B, Descroix S (2012) Colloidal nanomaterial-based immunoassay. Nanomedicine 7:917–929CrossRefGoogle Scholar
  12. 12.
    Liu NN, Huang FJ, Lou XD, Xia F (2017) DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Sci China-Chem 60:311–318CrossRefGoogle Scholar
  13. 13.
    Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Guo YM, Xianyu YL, Chen WW, Zhao YY, Jiang XY (2013) Nanomaterials for ultrasensitive protein detection. Adv Mater 25:3802–3819CrossRefGoogle Scholar
  15. 15.
    Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen XY (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561CrossRefGoogle Scholar
  16. 16.
    Chen CH, Luo M, Ye T, Li NX, Ji XH, He ZK (2015) Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Analyst 140:4515–4520CrossRefGoogle Scholar
  17. 17.
    Wang B, Yu C (2010) Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew Chem Int Ed 49:1485–1488CrossRefGoogle Scholar
  18. 18.
    Lai GS, Yan F, Ju HX (2009) Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem 81:9730–9736CrossRefGoogle Scholar
  19. 19.
    Zhu DB, Hou XM, Xing D (2012) Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein. Anal Chim Acta 725:39–43CrossRefGoogle Scholar
  20. 20.
    Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) An integrated giant magnetoimpedance biosensor for detection of biomarker. Biosens Bioelectron 58:338–344CrossRefGoogle Scholar
  21. 21.
    Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52:3568–3571CrossRefGoogle Scholar
  22. 22.
    Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349CrossRefGoogle Scholar
  23. 23.
    Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581CrossRefGoogle Scholar
  24. 24.
    Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758CrossRefGoogle Scholar
  25. 25.
    Wachowius F, Attwater J, Holliger P (2017) Nucleic acids: function and potential for abiogenesis. Q Rev Biophys 50:1–37CrossRefGoogle Scholar
  26. 26.
    Gerasimova YV, Kolpashchikov DM (2014) Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 43:6405–6438CrossRefGoogle Scholar
  27. 27.
    Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H (2016) Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater Sci Eng 2:278–294CrossRefGoogle Scholar
  28. 28.
    Veigas B, Fortunato E, Baptista PV (2015) Field effect sensors for nucleic acid detection: recent advances and future perspectives. Sensors 15:10380–10398CrossRefGoogle Scholar
  29. 29.
    Smith SJ, Nemr CR, Kelley SO (2017) Chemistry-driven approaches for ultrasensitive nucleic acid detection. J Am Chem Soc 139:1020–1028CrossRefGoogle Scholar
  30. 30.
    Rodiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168CrossRefGoogle Scholar
  31. 31.
    Ying YL, Zhang JJ, Gao R, Long YT (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52:13154–13161CrossRefGoogle Scholar
  32. 32.
    Hartman MR, Ruiz RCH, Hamada S, Xu CY, Yancey KG, Yu Y, Han W, Luo D (2013) Point-of-care nucleic acid detection using nanotechnology. Nanoscale 5:10141–10154CrossRefGoogle Scholar
  33. 33.
    Guo J, Ju JY, Turro NJ (2012) Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 402:3115–3125CrossRefGoogle Scholar
  34. 34.
    Gao XF, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang XJ, Liu GD (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584CrossRefGoogle Scholar
  35. 35.
    Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuator B-Chem 121:158–177CrossRefGoogle Scholar
  36. 36.
    Huang JH, Su XF, Li ZG (2017) Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 96:127–139CrossRefGoogle Scholar
  37. 37.
    Liu DB, Wang Z, Jiang XY (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433CrossRefGoogle Scholar
  38. 38.
    Alvarez-Puebla RA, Liz-Marzan LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51:11214–11223CrossRefGoogle Scholar
  39. 39.
    Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical detection of metal ions. Analyst 141:4262–4271CrossRefGoogle Scholar
  40. 40.
    Zhao T, Liu R, Ding XF, Zhao JC, Yu HX, Wang L, Xu Q, Wang X, Lou XH, He M, Xiao Y (2015) Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal Chem 87:7712–7719CrossRefGoogle Scholar
  41. 41.
    Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767CrossRefGoogle Scholar
  42. 42.
    Arya SK, Lim B, Rahman ARA (2013) Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip 13:1995–2027CrossRefGoogle Scholar
  43. 43.
    Castro CM, Ghazani AA, Chung J, Shao HL, Issadore D, Yoon TJ, Weissleder R, Lee H (2014) Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. Lab Chip 14:14–23CrossRefGoogle Scholar
  44. 44.
    Yu L, Ng SR, Xu Y, Dong H, Wang YJ, Li CM (2013) Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip 13:3163–3182CrossRefGoogle Scholar
  45. 45.
    Alix-Panabieres C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62CrossRefGoogle Scholar
  46. 46.
    Lin M, Chen JF, Lu YT, Zhang Y, Song JZ, Hou S, Ke ZF, Tseng HR (2014) Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res 47:2941–2950CrossRefGoogle Scholar
  47. 47.
    Wu MS, Liu Z, Xu JJ, Chen HY (2016) Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem 3:429–435CrossRefGoogle Scholar
  48. 48.
    Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348CrossRefGoogle Scholar
  49. 49.
    Liu NN, Jiang YN, Zhou YH, Xia F, Guo W, Jiang L (2013) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Ed 52:2007–2011CrossRefGoogle Scholar
  50. 50.
    Wei BM, Liu NN, Zhang JT, Ou XW, Duan RX, Yang ZK, Lou XD, Xia F (2015) Regulation of DNA self-assembly and DNA hybridization by chiral molecules with corresponding biosensor applications. Anal Chem 87:2058–2062CrossRefGoogle Scholar
  51. 51.
    Wei BM, Zhang JT, Wang HB, Xia F (2016) A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 141:4313–4318CrossRefGoogle Scholar
  52. 52.
    Wei BM, Zhang TC, Ou XW, Li XC, Lou XD, Xia F (2016) Stereochemistry-guided DNA probe for single nucleotide polymorphisms analysis. ACS Appl Mater Interfaces 8:15911–15916CrossRefGoogle Scholar
  53. 53.
    Jiang YN, Liu NN, Guo W, Xia F, Jiang L (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134:15395–15401CrossRefGoogle Scholar
  54. 54.
    Liu NN, Hou RZ, Gao PC, Lou XD, Xia F (2016) Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141:3626–3629CrossRefGoogle Scholar
  55. 55.
    Khanna P, Walt DR (2015) Salivary diagnostics using a portable point-of-service platform: a review. Clin Ther 37:498–504CrossRefGoogle Scholar
  56. 56.
    Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129CrossRefGoogle Scholar
  57. 57.
    Roder M, Vieths S, Holzhauser T (2009) Commercial lateral flow devices for rapid detection of peanut (Arachis hypogaea) and hazelnut (Corylus avellana) cross-contamination in the industrial production of cookies. Anal Bioanal Chem 395:103–109CrossRefGoogle Scholar
  58. 58.
    Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N (2014) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim Acta 181:223–230CrossRefGoogle Scholar
  59. 59.
    Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14CrossRefGoogle Scholar
  60. 60.
    Chen M, Yang H, Rong LY, Chen XQ (2016) A gas-diffusion microfluidic paper-based analytical device (mu PAD) coupled with portable surface-enhanced Raman scattering (SERS): facile determination of sulphite in wines. Analyst 141:5511–5519CrossRefGoogle Scholar
  61. 61.
    Liu D, Li XR, Zhou JK, Liu SB, Tian T, Song YL, Zhu Z, Zhou LJ, Ji TH, Yang CY (2017) A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens Bioelectron 96:332–338CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations