Performance Evaluation of Management Faculty Using Hybrid Model of Logic—AHP

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 225)

Abstract

The main objective of this paper is to show how the two approaches of Boolean logic and analytical hierarchy process (AHP) can be utilized to solve management faculty selection problem. The problem is solved in two phases. In phase I, we use logic to find the minimal criteria required for management faculty selection. In phase II, two different methods have been used separately: logical analysis and AHP for final selection from the shortlisted candidates to arrive at a decision.

Keywords

LAD Propositional logic Computational complexity AHP 

References

  1. 1.
    Hammer, P.L.: The logic of cause-effect relationship. In: Lecture at International Conference on Multi Attribute Decision Making via Operations Research based expert systems, Passau, Germany (1986)Google Scholar
  2. 2.
    Boros, E., Hammer, P.L., Ibarki, T., Kogan, A.: Logical analysis of numerical data. Math. Program. 79, 163–190 (2000)MathSciNetGoogle Scholar
  3. 3.
    Boros, E., Crama, Y., Hammer, P.L., Ibaraki, T., Kogan, A., Makino, K.: Logical analysis of data: classification with justification. DIMACS Technical report 2009-02, February (2009)Google Scholar
  4. 4.
    Boros, E., Hammer, P.L., Ibarki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2), 292–306 (2000)CrossRefGoogle Scholar
  5. 5.
    Hammer, A., Hammer, P.L., Muchnik, I.: Logical analysis of Chineese Labor productivity patterns. Ann. Oper. Res. 87, 165–176 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Williams, H.P.: Logic and Integer Programming. International Series in Operations Research and Management Science (2009)Google Scholar
  7. 7.
    Crama, Y., Hammer, P.L., Ibaraki, T.: Cause-effect relationships and partially defined boolean functions. Ann. Oper. Res. 16, 299–326 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Anthony, M., Hammer, P.L.: A boolean measure of similarity. Discrete Appl. Math 154, 2242–2246 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990)CrossRefMATHGoogle Scholar
  10. 10.
    Chanda, A., Sarkar, B., Mukherjee, R.N.: Logical deduction for an integer programming problem and integer programming (IP) formulation for a logical problem. Int. J. Oper. Res. Nepal 4, 33–40 (2015)MathSciNetGoogle Scholar
  11. 11.
    Quine, W.V.: The problem of simplifying truth functions. Am. Math. Monthly 59, 521–531 (1952)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Quine, W.V.: A way to simplify truth functions. Am. Math. Mon 62, 627–631 (1955)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Robinson, J.A.: A machine oriented logic based on the resolution principles. J. ACM 12, 23–41 (1965)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Robinson, J.A.: A generalized resolution principle. Mach. Intell. 3, 77–93 (1968)MATHGoogle Scholar
  15. 15.
    Taha, H.A.: Operations Research: An Introduction. Pearson Education (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anupama Chanda
    • 1
  • R. N. Mukherjee
    • 2
  • Bijan Sarkar
    • 2
  1. 1.Burdwan UniversityBardhamanIndia
  2. 2.Jadavpur UniversityKolkataIndia

Personalised recommendations