Advertisement

Mathematical Modeling of Rock Pore Geometry and Mineralization: Applications of Persistent Homology and Random Walk

  • Takeshi TsujiEmail author
  • Fei Jiang
  • Anna Suzuki
  • Tomoyuki Shirai
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 28)

Abstract

Mathematical methods used to model heterogeneous pore geometry of natural rocks and their temporal evolution (mineralization processes) are explored. Recent development of X-ray microcomputed tomography enables high-resolution (micrometers) pore geometry of rock to be obtained. Nevertheless, exploring the complex spatial distribution of pore bodies, and relating this information to hydraulic and elastic properties, remains a challenge. In this study, persistent homology is first applied to describe heterogeneous rock pores, which captures the appearance and disappearance of topological features. The persistence diagram derived from this analysis shows the characteristic features of rock pore. Next, random walk is used to model rock mineralization processes. The results show that rock pore evolution is successfully modeled using random walk by defining the probability of mineral precipitation and dispersion degree in each grid cell of a modeled rock body. The mineralization parameter can be flexibly changed and a short computation time used when using random walk; this approach may thus be practical when simulating rock evolution processes such as long-term chemical reactions in a reservoir.

Keywords

Natural rock Heterogeneous pore geometry Persistent homology Rock mineralization Random walk 

Notes

Acknowledgements

This research was improved by discussions in the Study Group Workshop in 2016 and is supported by a joint project between the International Institute for Carbon-Neutral Research (I2CNER) and Institute of Mathematics for Industry (IMI), Kyushu University. This work was partially supported by JSPS through a Grant-in-Aid for Science Research on Innovative Area (no.JP15H01143; JP17H05318). T.S. is partially supported by JSPS Grant-in-Aid (26610025, 26287019) and JST CREST Mathematics (15656429).

References

  1. 1.
    Cubical complex of Perseus software project Web page, http://www.sas.upenn.edu/vnanda/perseus/index.html
  2. 2.
    H. Dong, M.J. Blunt, Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 36307 (2009),  https://doi.org/10.1103/PhysRevE.80.036307
  3. 3.
    J. Dvorkin, A. Nur, H. Yin, Effective properties of cemented granular material. Mech. Mater. 18, 351–366 (1994)CrossRefGoogle Scholar
  4. 4.
    H. Edelsbrunner, J. Harer: Persistent homology—a survey, in Surveys on Discrete and Computational Geometry. Contemp. Math., Vol. 453 (Amer. Math. Soc., Providence, 2008), pp. 257–282Google Scholar
  5. 5.
    R.E. Ewing,The Mathematics of Reservoir Simulation, (SIAM, 1983)Google Scholar
  6. 6.
    R. Forman, Morse theory for cell complexes. Adv. Math. (N.Y) 134(1), 90–145 (1998),  https://doi.org/10.1006/aima.1997.1650
  7. 7.
    H. Huang, L. Wang, X.Y. Lu, Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61(12), 3606–17 (2011),  https://doi.org/10.1016/j.camwa.2010.06.034
  8. 8.
    F. Jiang, T. Tsuji, Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media. Phys. Rev. E 90, 053306 (2014),  https://doi.org/10.1103/PhysRevE.90.053306
  9. 9.
    F. Jiang, T. Tsuji, Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images. Water Resour. Res. (2017),  https://doi.org/10.1002/2016WR019098
  10. 10.
    H. Kopp, N. Kukowski, Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics 22(6), 1072 (2003),  https://doi.org/10.1029/2002TC001420
  11. 11.
    G.T. Kuster, M.N. Toksoz, Velocity and attenuation of seismic waves in two-phase media, part 1 theoretical formulations. Geophysics 39(5), 587–606 (1974),  https://doi.org/10.1190/1.144050
  12. 12.
    R. Lenormand, E. Touboul, C. Zarcone, Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189(9), 165–187 (1988)CrossRefGoogle Scholar
  13. 13.
    G. Mavko, A. Nur, The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics 62(5), 1480–1482 (1997),  https://doi.org/10.1190/1.1444251
  14. 14.
    G. McNamara, G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332 (1988),  https://doi.org/10.1103/PhysRevLett.61.2332
  15. 15.
    K. Mischaikow, V. Nanda, Morse theory for filtrations and efficient computation of persistent homology. Discret. Comput. Geometr. 50(2), 330–353 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    PHAT (Persistent Homology Algorithm Toolbox), https://code.google.com/p/phat/
  17. 17.
    P.M. Shearer, Cracked media, Poisson’s ratio and the structure of the upper oceanic crust. Geophys. J 92, 357–362 (1988)CrossRefGoogle Scholar
  18. 18.
    A.F.B. Tompson, L.W. Gelhar, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resour. Res. 26(10), 2541–2562 (1990)Google Scholar
  19. 18.
    T. Tsuji, J. Ashi, M. Strasser, G. Kimura, Identification of the static backstop and its influence on the evolution of the accretionary prism in the Nankai Trough. Earth Planet. Sci. Lett. 431, 15–25 (2015),  https://doi.org/10.1016/j.epsl.2015.09.011
  20. 19.
    T. Tsuji, G.J. Iturrino, Velocity-porosity relationships of oceanic basalt from eastern flank of the Juan de Fuca ridge: the effect of crack closure on seismic velocity. Explor. Geophys. 39(1), 41–51 (2008),  https://doi.org/10.1071/EG08001
  21. 20.
    T. Tsuji, F. Jiang, K. Christensen, Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone. Adv. Water Resour. 95, 3–15 (2016),  https://doi.org/10.1016/j.advwatres.2016.03.005
  22. 21.
    H. Yamabe, T. Tsuji, Y. Liang, T. Matsuoka, Influence of fluid displacement patterns on seismic velocity during supercritical CO2 injection: simulation study for evaluation of the relationship between seismic velocity and CO2 saturation. Int. J. Greenh. Gas Control 46, 197–204 (2016),  https://doi.org/10.1016/j.ijggc.2016.01.011
  23. 22.
    S.-Y. Yoo, Y. Kuroda, Y. Mito, T. Matsuoka, M. Nakagawa, A. Ozawa, K. Sugiyama, A. Ueda, A geochemical clogging model with carbonate precipitation rates under hydrothermal conditions. Appl. Geochem. 30, 67–74 (2013)CrossRefGoogle Scholar
  24. 23.
    A. Zomorodian, G. Carlsson, Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Takeshi Tsuji
    • 1
    • 2
    Email author
  • Fei Jiang
    • 1
    • 3
  • Anna Suzuki
    • 4
  • Tomoyuki Shirai
    • 5
  1. 1.International Institute for Carbon-Neutral Energy Research, Kyushu UniversityFukuokaJapan
  2. 2.Department of Earth Resources EngineeringKyushu UniversityFukuokaJapan
  3. 3.Yamaguchi UniversityYamaguchiJapan
  4. 4.Institute of Fluid Science, Tohoku UniversitySendaiJapan
  5. 5.Institute of Mathematics for Industry, Kyushu UniversityFukuokaJapan

Personalised recommendations