Mobility in RWNs

  • Shengming Jiang


The major advantage of wireless networks over wired networks is mobility support for terminal mobility and service mobility. Terminal mobility allows a user along its terminals for instance mobile phones to be able to move anytime even during a communication in progress. Service mobility permits a user to use the registered services anywhere and anytime with different terminals. Now the term “mobility” may also refer to other capabilities such as session mobility, with which an ongoing session can be switched from one terminal to another without session interruption. Here we focus on the issues due to location change and user motion illustrated in Fig.  1.30, i.e.,


  1. 1.
    Chai, R., Zhou, W.-G., Chen, Q.-B., Tang, L.: A survey on vertical handoff decision for heterogeneous wireless networks. In: Prof. International Youth Conference on Informati Computing & Telecommunication (YC-ICT), pp. 279–282. Beijing, China (2009)Google Scholar
  2. 2.
    Edward, E.P., Sumathy, Dr. V.: A survey of seamless vertical handoff schemes for Wi-Fi/WiMAX heterogeneous networks. In: International Conference on Signal Processing & Communication. Bangalore, India (2010)Google Scholar
  3. 3.
    Ahmed, A., Boulahia, L.M., Gaïti, D.: Enabling vertical handover decisions in heterogeneous wireless networks: a state-of-the-art and a classification. IEEE Commun. Surv. Tutor. 16(2), 776–811 (2014)CrossRefGoogle Scholar
  4. 4.
    IEEE Std 802.21, IEEE Standard for Local and metropolitan area networks - Part 21: Media Independent Handover Services (2009)Google Scholar
  5. 5.
    Oliva, A.D.L., Banchs, A., Soto, I., Melia, T., Vidal, A.: An overview of IEEE 802.21: mediaindependent handover serviceS. IEEE Wirel. Commun. Mag. 15(4), 96–103 (2008). AugGoogle Scholar
  6. 6.
    Rappaport, T.S.: Wireless Communications. Principle & Practice. Prentice-Hall, New Jersey, USA (1996)Google Scholar
  7. 7.
    Lee, W.C.Y.: Mobile Cellular Telecommunications - Analog and Digital Systems, 2nd edn. McGraw-Hill Inc, New York City (1995)Google Scholar
  8. 8.
    Garg, V.K.: Wireless and Personal Communications Systems. Prentice-Hall, Upper Saddle River (2000). ISBN 0-13-234626-5Google Scholar
  9. 9.
    Raghavendra, R., Belding, E.M., Papagiannaki, K., Almeroth, K.C.: Understanding handoffs in large IEEE 802.11 wireless networks. In: Proceedings of ACM SIGCOMM Conference on Internet Measurement (IMC), pp. 333–338. San Diego, USA (2007)Google Scholar
  10. 10.
    Pack, S., Choi, J., Kwon, T., Choi, Y.: Fast handoff support in IEEE 802.11 wireless networks. IEEE Commun. Surv. Tutor. 9(1), 2–12 (2007)CrossRefGoogle Scholar
  11. 11.
    Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 18(3), 1617–1655 (2016)CrossRefGoogle Scholar
  12. 12.
    Johnson, D., Perkins, C., Arkko, J.: Mobility support in IPv6, IETF RFC 3775 (2004)Google Scholar
  13. 13.
    Lin, Y.B.: Queueing priority channel assignment strategies for PCS hand-off and initial access. IEEE Trans. Veh. Tech. 43(3), 704–712 (1994). AugGoogle Scholar
  14. 14.
    Hong, D., Rappaport, S.S.: Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures. IEEE Trans. Veh. Tech. 35(3), 77–92 (1986). AugGoogle Scholar
  15. 15.
    Posner, E.C., Guerin, R.: Traffic policies in cellular radio that minimize blocking of handoff calls. In: Proceedings of International Traffic Congress (ITC) 11. Kyoto, Japan (1985)Google Scholar
  16. 16.
    Guerin, R.: Queueing-blocking system with two arrival streams and guard channels. IEEE Trans. Commun. 36(2), 153–163 (1988). FebGoogle Scholar
  17. 17.
    Ramjee, R., Nagarajan, R., Towsley, D.: On optimal call admission control in cellular networks. In: Proceedings of IEEE INFOCOM, pp. 43–50. San Francisco CA, USA (1996)Google Scholar
  18. 18.
    Levine, D.A., Akyildiz, I.F., Naghshineh, M.: A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. ACM/IEEE Trans. Netw. 5(1), 1–12 (1997). FebCrossRefGoogle Scholar
  19. 19.
    Nagshineh, M., Schwartz, M.: Distributed call admission control in mobile/wireless networks. IEEE J. Sel. Areas Commun. 14(4), 711–716 (1996). MayGoogle Scholar
  20. 20.
    Jiang, S.M., Ling, X.H.: A CAC considering both intra-cell and inter-cell handoff for measurement-based DCA. IEEE Trans. Veh. Tech. 56(2) (2007)CrossRefGoogle Scholar
  21. 21.
    Li, J., Shroff, N.B., Chong, E.K.P.: Channel carrying: a novel handoff scheme for mobile cellular networks. In: Proceedings of IEEE INFOCOM, vol. 2, pp. 908–915. Kobe, Japan (1997)Google Scholar
  22. 22.
    Li, J., Shroff, N.B., Chong, E.K.P.: Channel carrying: a novel handoff scheme for mobile cellular networks. ACM/IEEE Trans. Netw. 7(1), 38–50 (1999). FebGoogle Scholar
  23. 23.
    TIA/EIA Standard, TDMA third generation wireless: introduction to channels. TIA/EIA-136-100-B (2000)Google Scholar
  24. 24.
    Katzela, I., Naghshineth, M.: Channel assignment schemes for cellular telecommunication systems: a comprehensive survey. IEEE Pers. Commun. Mag. 10–30 (1996)Google Scholar
  25. 25.
    Zhang, X., Zhuang, W.H.: A channel sharing scheme for cellular mobile communications. IEEE Pers. Commun. Mag. 9, 149–163 (1999)Google Scholar
  26. 26.
    Cimini, L.J., Foschini, G.J., Chih-Lin, I., Miljanic, Z.: Call blocking performance of distributed algorithms for dynamic channel allocation in microcells. IEEE Trans. Commun. 42(8), 2600–2607 (1994)CrossRefGoogle Scholar
  27. 27.
    Li, V.O.K., Qiu, X.M.: Personal communication systems (PCS). IEEE Proc. 83(9), 1210–1243 (1995). SepCrossRefGoogle Scholar
  28. 28.
    Chuang, J.C.-I.: Autonomous adaptive frequency assignment for TDMA portable radio systems. IEEE Trans. Veh. Tech. 40(3), 627–635 (1991). AugCrossRefGoogle Scholar
  29. 29.
    Cheng, M., Chuang, J.C.-I.: Performance evaluation of distributed measurement-based dynamic channel assignment in local wrieless communications. IEEE J. Sel. Areas Commun. 14(4), 698–710 (1996). MayCrossRefGoogle Scholar
  30. 30.
    Kuek, S.S., Wong, W.C.: Ordered dynamic channel assignment scheme with reassignment in highway microcells. IEEE Trans. Veh. Tech. 41(3), 271–277 (1992). AugCrossRefGoogle Scholar
  31. 31.
    Kuek, S.S., Wong, W.C.: Approximate analysis of a dynamic-channel assignment scheme with handoffs. IEE Proc. Commun. 141(2), 89–92 (1994). AprCrossRefGoogle Scholar
  32. 32.
    Okada, K., Kubota, F.: A proposal of a dynamic channel assignment strategy with information of moving direction in micro cellular systems. IEICE Trans. Fundam. E75-A(12), 1667–1673 (1992)Google Scholar
  33. 33.
    Okada, K., Park, D.K., Yoshimoto, S.: A dynamic channel assignment strategy using information on speed and moving direction for micro cellular systems. IEICE Trans. Fundam. E79-B(3), 279–288 (1996)Google Scholar
  34. 34.
    Jiang, S.M., Ling, X.H., Chua, K.C.: Performance of channel carrying in DCA cellular networks. Wirel. Pers. Commun. 25(3), 241–262 (2003). JunGoogle Scholar
  35. 35.
    Wong, Y.M., Misic, J., Chanson, S.T.: Call admission control in DCA wireless network. In: Proceedings of IEEE Symposium Personal, Indoor & Mobile Radio Communication (PIMRC), pp. 665–671. Boston, USA (1998)Google Scholar
  36. 36.
    Re, E.D., Fantacci, R., Giambene, G.: Performance evaluation of different resource management strategies in mobile cellular networks. J. Telecom. Syst. 12(4), 315–340 (1999). DecGoogle Scholar
  37. 37.
    Tian, X.S., Ji, C.Y.: Bounding the performance of dynamic channel allocation with QoS provisioning for distributed admission control in wireless networks. In: Proceedings of IEEE INFOCOM, pp. 1356–1363. New York City, NY, USA (1999)Google Scholar
  38. 38.
    Egner, W.A., Prabhu, V.K.: Enhanced dynamic radio resource allocation performance using a gradient descent algorithm. In: Proceedings of IEEE Symposium Personal, Indoor & Mobile Radio Communication (PIMRC), pp. 1448–1452. Boston, USA (1998)Google Scholar
  39. 39.
    Kleinrock, L.: Queueing Systems, volume I: Theory. Wiley, New York (1975)Google Scholar
  40. 40.
    Lin, Y.B., Noerpel, A., Harasty, D.: The sub-rating channel assignment strategy for PCS hand-offs. IEEE Trans. Veh. Tech. 45(1), 122–130 (1996). FebGoogle Scholar
  41. 41.
    Jiang, S.M., Li, B., Luo, X.Y., Tsang, D.H.K.: A modified distributed call admission control scheme and its performance. ACM Wirel. Netw. (WINET) 7(2), 127–138 (2001)CrossRefGoogle Scholar
  42. 42.
    Akyildiz, I.F., Jiang, X., Mohanty, S.: A survey of mobility management in next-generation all-IP-based wireless systems. IEEE Wirel. Commun. Mag. 11(4), 16–28 (2004). AugCrossRefGoogle Scholar
  43. 43.
    Shenoy, N., Mishra, S.: Vertical handoff and mobility management for seamless integration of heterogeneous wireless access technologies. In: Hossain, E. (ed.) Heterogeneous Wireless Access Networks: Architectures and Protocols. Springer (2009)Google Scholar
  44. 44.
    Yan, X.H., Şekercioǧlu, Y.A., Narayananb, S.: A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless networks. Comput. Net. 54(11), 1848–1863 (2010). AugGoogle Scholar
  45. 45.
    Jiang, S.M.: On marine internet and its potential applications for underwater internetworking (extended abstract). In: Proceedings of ACM International Conference on Underwater Networks & Systems (WUWNet), pp. 57–58. Kaohsiung, Taiwan (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations