Advertisement

End-to-End Transmission Control in RWNs

  • Shengming Jiang
Chapter

Abstract

End-to-end transmission control is the major function of the transport layer, which is a bridge between networks and applications, providing reliable and unreliable end-to-end transmissions. An end point here refers to a user terminal such as a desktop computer or a notebook. Reliable end-to-end transmissions guarantee successful data delivery between source-destination pairs, whereas there is no such a guarantee with unreliable end-to-end transmissions. The functions used for those transmissions are installed in user terminals, and unnecessarily in networking units like routers or switches. Applications on top of this layer will not be aware of the particulars of underlayer networking operations.

References

  1. 1.
    Paxson, V., Allman, M.: Computing TCP’s Retransmission Timer. IETF RFC 2988 (2000)Google Scholar
  2. 2.
    Xie, X.L.: Computer Networks (in Chinese), 6th edn. Electronic Industry Press, Beijing (2013). ISBN 978-7-121-13072-4Google Scholar
  3. 3.
    Karn, P., Partridge, C.: Estimating round-trip times in reliable transport protocols. In: Proceedings of ACM SIGCOMM. Stowe, VT, USA (1987)Google Scholar
  4. 4.
    Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. IETF RFC 2581 (1999)Google Scholar
  5. 5.
    Floyd, S., Henderson, T., Gurtov, A.: The NewReno Modification to TCP’s Fast Recovery Algorithm. IETF RFC 3782. (2004)Google Scholar
  6. 6.
    Hanbali, A.A., Altman, E., Nain, P.: A survey of TCP over ad hoc networks. IEEE Commun. Surv. Tutor. 7(3), 22–36 (2005). 3rd QuarterGoogle Scholar
  7. 7.
    Sardar, B., Saha, D.: Survey of TCP enhancements for last-hop wireless networks. IEEE Commun. Surv. Tutor. 8(3), 20–34 (2006)CrossRefGoogle Scholar
  8. 8.
    Jain, R., Ramakrishnan, K.K.: Congestion avoidance in computer networks with a connectionless network layer: concepts, goals and methodology. In: Proceedings of Computer Networking Symposium, pp. 134–143 (1988)Google Scholar
  9. 9.
    Ramarkrishnan, K.K., Jain, R.: A binary feedback scheme for congestion avoidance in computer networks. ACM Trans. Comput. Syst. 8(2), 158–181 (1990)CrossRefGoogle Scholar
  10. 10.
    Solomon, J.D.: Mobile IP. The Internet Unplugged. Prentice-Hall, Upper Saddle River (1998)Google Scholar
  11. 11.
    Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Trans. Comput. Syst. 2(4), 277–88 (1984)CrossRefGoogle Scholar
  12. 12.
    Clark, D.: The design philosophy of the DARPA internet protocols. In: SIGCOMM ’88: Symposium Proceedings on Communications Architectures and Protocols, pp. 106–114. New York, USA (1988)Google Scholar
  13. 13.
    Dyer, T., Boppana, R.: A Comparison of TCP performance over three routing protocols for mobile ad hoc networks. In: Proceedings of ACM International Symposium Mobile Ad Hoc Networking & Computing (MobiHoc), pp. 56–66. Long Beach, CA, USA (2001)Google Scholar
  14. 14.
    Fu, C.P., Liew, S.C.: TCP veno: TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas Commun. 21(2), 216–228 (2003)CrossRefGoogle Scholar
  15. 15.
    Wu, E.H.K., Chen, M.Z.: TJTCP: jitter-based TCP for heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 22(4), 757–766 (2004)CrossRefGoogle Scholar
  16. 16.
    Wang, F., Zhang, Y.: Improving TCP performance over mobile ad hoc networks with out-of-order detection and response. In: Proceedings of ACM International Symposium Mobile Ad Hoc Networking & Computing (MobiHoc), pp. 217–225. Lausanne, Switzerland (2002)Google Scholar
  17. 17.
    Bhandarkar, S., Sadry, N.E., Reddy, A.L.N., Vaidya, N.H.: TCP-DCR: a novel protocol for tolerating wireless channel errors. IEEE Trans. Mob. Comput. 4(5), 517–529 (2005)CrossRefGoogle Scholar
  18. 18.
    Brakmo, L.S., Oąr?Malley, S.W., Peterson, L.L.: TCP vegas: new techniques for congestion detection and avoidance. In: Proceedings of ACM SIGCOMM, pp. 24–35. London England, UK (1994)Google Scholar
  19. 19.
    Mo, J., La, R.J., Anantharam, V., Walrand, J.J.: Analysis and comparison of TCP reno and vegas. In: Proceedings of IEEE INFOCOM, vol. 3, pp. 1556–1563. New York City, NY, USA (1999)Google Scholar
  20. 20.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol for real-time application. IETF RFC 1889 (1996)Google Scholar
  21. 21.
    Chen, S.Y., Wu, E.H.K., Chen, M.Z.: A new approach using timebased model for TCP-Friendly rate estimation. In: Proceedings of IEEE International Conference on Communication (ICC), vol. 1, pp. 679–683. Anchorage, Alaska, USA (2003)Google Scholar
  22. 22.
    Jacobson, V., Braden, R., Borman, D.: TCP extensions for high performance. IETF RFC 1323 (1992)Google Scholar
  23. 23.
    Chandran, K., Raghunathan, S., Venkatesan, S., Prakash, R.: A feedback-based scheme for improving TCP performance in ad hoc wireless networks. IEEE Pers. Commun. Mag. 8(1), 34–39 (2001)CrossRefGoogle Scholar
  24. 24.
    Kim, D., Toh, C., Choi, Y.: TCP-BuS: improving TCP performance in wireless ad hoc networks. J. Commun. Net. 3(2), 175–186 (2001)Google Scholar
  25. 25.
    Holland, S.G., Vaidya, N.: Analysis of TCP performance on mobile ad hoc network on wireless. ACM Wirel. Netw. (WINET) 8(2–3), 275–288 (2002)CrossRefGoogle Scholar
  26. 26.
    Toh, C.K.: Associativity-based routing for ad hoc networks. Wireless Pers. Commun. 4(2), 103–139 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Johnson, D.B., Maltz, D.A., Hu, Y.C.: The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. IETF RFC 4728. (2007)Google Scholar
  28. 28.
    Akyildiz, I.F., Morabito, G., Palazzo, S.: TCP-peach: a new congestion control scheme for satellite IP networks. ACM/IEEE Trans. Netw. 9(3), 307–321 (2001)CrossRefGoogle Scholar
  29. 29.
    Akyildiz, I.F., Zhang, X., Fang, J.: TCP-Peach+: enhancement of TCP-peach for satellite IP networks. IEEE Commun. Lett. 6(7), 303–305 (2002)CrossRefGoogle Scholar
  30. 30.
    Lahanas, A., Tsaoussidis, V.: Improving TCP performance over networks with wireless components using probing devices. Int. J. Commun. Syst. 15(6), 495–511 (2002)CrossRefGoogle Scholar
  31. 31.
    Partridge, C., Shepard, T.J.: TCP/IP performance over satellite links. IEEE Netw. Mag. 11(5), 44–49 (1997)CrossRefGoogle Scholar
  32. 32.
    ElRakabawy, S.M., Alexander, K., Christoph, L.: TCP with adaptive pacing for multihop wireless networks. In: Proceedings of ACM International Symposium Mobile Ad Hoc Networking & Computing (MobiHoc), pp. 288–299. New York, NY, USA (2005)Google Scholar
  33. 33.
    Floyd, S., Henderson, T.: The new-reno modification to TCP’s fast recovery algorithm. IETF RFC 2582 (1999)Google Scholar
  34. 34.
    Braden, R.: Requirements for Internet Hosts - Comunication Layers. IETF RFC 1122 (1989)Google Scholar
  35. 35.
    Altman, E., Jimenez, T.: Novel delayed ACK techniques for improving TCP performance in multihop wireless networks. In: Proceedings of IEEE International Conference on Personal Wireless Communications, pp. 237–242. Venice, Itlay (2003)Google Scholar
  36. 36.
    Singh, A.K.: Kankipati, K.: TCP-ADA: TCP with adaptive delayed acknowledgement for mobile ad hoc networks. In: Proceedings of IEEE Wireless Communication & Networking Conference (WCNC), vol. 3, pp. 1685–1690. Atlanta, Georgia, USA (2004)Google Scholar
  37. 37.
    Cordeiro, C., Das, S., Agrawal, D.: COPAS: Dynamic contention-balancing to enhance the performance of TCP over multi-hop wireless networks. In: Proceedings of IEEE Conference on Computer Communication and Network (ICCCN), pp. 382–387. Miami, USA (2003)Google Scholar
  38. 38.
    Liu, J., Singh, S.: ATCP: TCP for Mob. Ad Hoc Netw. IEEE J. Sel. Areas Commun. 19(7), 1300–1315 (2001)CrossRefGoogle Scholar
  39. 39.
    Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP westwood: end-to-end congestion control for wired/wireless networks. ACM Wirel. Netw. (WINET) 8(5), 467–479 (2002)CrossRefGoogle Scholar
  40. 40.
    Mascolo, S., Grieco, L.A., Ferorelli, R., Camarda, P., Piscitelli, G.: Performance evaluation of westwood+ tcp congestion control. Perform. Eval. 55(1–2), 93–111 (2004)CrossRefGoogle Scholar
  41. 41.
    Xu, K., Tian, Y., Ansari, N.: TCP-jersey for wireless IP communications. IEEE J. Sel. Areas Commun. 22(4), 747–756 (2004)CrossRefGoogle Scholar
  42. 42.
    Li, S.Q., Hwang, C.: Link capacity allocation and network control by filtered input rate in high speed networks. ACM/IEEE Trans. Netw. 3(1), 10–25 (1995)CrossRefGoogle Scholar
  43. 43.
    Clark, D.D., Fang, W.J.: Explicit allocation of best-effort packet delivery service. ACM/IEEE Trans. Netw. 6(4), 362–373 (1998)CrossRefGoogle Scholar
  44. 44.
    Sundaresan, K., Anantharaman, V., Hsieh, H.Y., Sivakumar, R.: ATP: a reliable transport protocol for ad hoc networks. IEEE Trans. Mob. Comput. 4(6), 588–603 (2005)CrossRefGoogle Scholar
  45. 45.
    Jiang, S.M., Zuo, Q., Wei, G.: Decoupling congestion control from TCP for multi-hop wireless networks: semi-TCP. In: Proceedings of ACM MobiCom Workshop on Challenged Networks (CHANTS). Beijing, China (2009)Google Scholar
  46. 46.
    Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control. ACM/IEEE Trans. Netw. 7(4), 458–472 (1999)CrossRefGoogle Scholar
  47. 47.
    Cai, Y.G., Jiang, S.M., Guan, Q.S., Yu, R.: Decoupling congestion control from TCP (semi-TCP) for multi-hop wireless networks. EURASIP J. Wirel. Commun. Netw. 149, 2013 (2013)Google Scholar
  48. 48.
    Xu, S., Saadawi, T.: Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks? IEEE Commun. Mag. 39(4), 130–137 (2001)CrossRefGoogle Scholar
  49. 49.
    IEEE Std 802.11, Medium Access Control (MAC) sub layer and 3 Physical Layer Specifications (1997)Google Scholar
  50. 50.
    Zhai, H.Q., Wang, J.F., Fang, Y.G.: Distributed packet scheduling for multihop flows in ad hoc networks. In: Proceedings of IEEE Wireless Communication & Networking Conference (WCNC), vol. 2, pp. 1081–1086. Atlanta, Georgia, USA (2004)Google Scholar
  51. 51.
    Camp, J.D., Knightly, E.W.: The IEEE 802.11s Extended Service Set Mesh Networking Standard (2007)Google Scholar
  52. 52.
    IEEE Std 802.11s, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 10: Mesh Networking (2011)Google Scholar
  53. 53.
    Sadeghi, B., Yamdad, A., Fujiwara, A., Yang, L.: A simple and efficient hop-by-hop congestion control protocol for wireless mesh networks. In: Proceedings of Annual International Wireless Internet Conference (WICON). Boston, USA (2006)Google Scholar
  54. 54.
    Scheuermann, B., Locherta, C., Mauve, M.: Implicit hop-by-hop congestion control in wireless multihop networks. Ad Hoc Netw. 6, 260–288 (2008)CrossRefGoogle Scholar
  55. 55.
    Chen, K., Nahrstedt, K., Vaidya, N.: The utility of explicit rate-based flow control in mobile ad hoc networks. In: Proceedings of IEEE Wireless Communication & Networking Conference (WCNC), vol. 3, pp. 1921–1926. Atlanta, Georgia, USA (2004)Google Scholar
  56. 56.
    Yi, Y., Shakkottai, S.: Hop-by-hop congestion control over a wireless multi-hop network. ACM/IEEE Trans. Netw. 15(1), 133–144 (2007)CrossRefGoogle Scholar
  57. 57.
    Wang, X.Y., Perkins, D.: Cross-layer hop-by-hop congestion control in mobile ad hoc networks. In: Proceedings of IEEE Wireless Communication & Networking Conference (WCNC). Las Vegas, USA (2008)Google Scholar
  58. 58.
    Jiang, S.M.: Future Wireless and Optical Networks: Networking Modes and Cross-Layer Design. Springer, London, UK (2012)CrossRefGoogle Scholar
  59. 59.
    Gerla, M., Tang, K., Bagrodia, R.: TCP performance in wireless multi-hop networks. In: Proceedings of IEEE Workshop on Mobile Computing Systems & Applications (WMCSA), pp. 41–50. New Orleans, LA, USA (1999)Google Scholar
  60. 60.
    Kawadia, V., Kumar, P.R.: Experimental investigations into TCP performance over wireless multihop networks. In: Proceedings of 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis, pp. 29–34. New York, USA (2005)Google Scholar
  61. 61.
    Barakat, C., Altman, E., Dabbous, W.: On TCP performance in a heterogeneous network: a survey. IEEE Commun. Mag. 38(1), 40–46 (2002)CrossRefGoogle Scholar
  62. 62.
    Chlamtac, I., Conti, M., Liu, J.: Mobile ad hoc networking: imperatives and challenges. Ad Hoc Netw. J. (Elsevier) 1(1), 13–64 (2003)CrossRefGoogle Scholar
  63. 63.
    Leung, K.C., Li, V.O.K.: Transmission control protocol (TCP) in wireless networks: issues, approaches, and challenges. IEEE Commun. Surv. Tutor. 8(4), 64–79 (2006)CrossRefGoogle Scholar
  64. 64.
    Lochert, C., Scheuermann, B., Mauve, M.: A survey on congestion control for mobile ad hoc networks. Wiley Wirel. Commun. Mob. Comput. 7(5), 655–676 (2007)CrossRefGoogle Scholar
  65. 65.
    Xu, C.Q., Zhao, J., Muntean, G.-M.: Congestion control design for multipath transport protocols: a survey. IEEE Commun. Surv. Tutor. 18(4), 2948–2969 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations