Security in UWANs

Chapter

Abstract

Weak security is Achilles’ heel of many wireless networks because of the severe security situation caused by the broadcast nature of wireless media, mobility and heterogenous user profiles. Communication capacity, computation capability and energy supply are constrained for countering against security threats in wireless networks. This situation becomes even worse in UWANs because the resources are much more constrained while security situation is more server due to special networking environments. The peculiar features of UWANs cause existing solutions proposed for radio wireless networks (RWNs) cannot be used directly in UWANs (Stojanovic, ACM Mob Comput Commun Rev 11(4): 34–43, 2007, [1], Jiang and Xu, Adv Mater Res 317–319:1002–1006, 2011, [2], Dini and Duca, Sensors 12(11):15133–15158, 2012, [3]). This chapter discusses some typical proposals for UWAN security.

References

  1. 1.
    Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. ACM Mob. Comput. Commun. Rev. 11(4), 34–43 (2007)CrossRefGoogle Scholar
  2. 2.
    Jiang, H.F., Xu, Y.: Research advances on security problems of underwater sensor networks. Adv. Mater. Res. 317–319, 1002–1006 (2011)Google Scholar
  3. 3.
    Dini, G., Duca, A.L.: A secure communication suite for underwater acoustic sensor networks. Sensors 12(11), 15133–15158 (2012)CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I.F., Wang, X.D.: A survey on wireless mesh networks. IEEE Commun. Mag. 43(9), S23–S30 (2005)CrossRefGoogle Scholar
  5. 5.
    Krikidis, I., Thompson, J.S., McLaughlin, S.: Relay selection for secure cooperative networks with jamming. IEEE Trans. Wireless Commun. 8(10), 5003–5011 (2009)CrossRefGoogle Scholar
  6. 6.
    Melodia, T., Kulhandjian, H., Kuo, L.-C., Demirors, E.: Advances in underwater acoustic networking. In: Basagni, S., Conti, M., Giordano, S., Stojmenovic, I., (eds.), Mobile Ad Hoc Networking: The Cutting Edge Directions, pp. 804 – 852. Wiley-IEEE Press (2013)CrossRefGoogle Scholar
  7. 7.
    Li, M., Kundu, S., Pados, D.A., Batalama, S.N.: Waveform design for secure SISO transmissions and multicasting. IEEE J. Sel. Areas Commun. 31(9), 1864–1874 (2013)CrossRefGoogle Scholar
  8. 8.
    Kulhandjian, K., Melodia, T., Koutsonikolas, D.: Securing underwater acoustic communications through analog network coding. In: Proceedings of the Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Singapore, pp. 266–274 (2014)Google Scholar
  9. 9.
    Yan, H., Shi, Z.J., Fei, Y.: Efficient implementation of elliptic curve cryptography on DSP for underwater sensor networks. In: Proceedings of the Workshop on Optimization for DSP & Embedded System (ODES), Seattle, WA, USA, pp. 7–15 (2009)Google Scholar
  10. 10.
    Luo, Y., Pu, L.N., Peng, Z., Shi, Z.J.: RSS-based secret key generation in underwater acoustic networks: advantages, challenges, and performance improvements. IEEE Commun. Mag. 54(2), 32–38 (2016)CrossRefGoogle Scholar
  11. 11.
    Jiang, S.M.: Securing underwater acoustic networks: a survey. IEEE Commun. Surv. Tutorials (2017)Google Scholar
  12. 12.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  13. 13.
    Brown, M., Cheung, D., Hankerson, D., Hernandez, J.L., Kirkup, M., Menezes, A.: PGP in constrained wireless devices. In: Proceedings of the USENIX Security Symposium (SSYM), Denver, Colorado, USA (2000)Google Scholar
  14. 14.
    Carman, D.W., Krus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor network security. Technical Report 00–010. NAI Labs, Network Associates Inc, Glenwood, MD, USA (2000)Google Scholar
  15. 15.
    Yuan, C., Chen, W.P., Zhu, Y.Q., Li, D.Y., Tan, J.: A low computational complexity authentication scheme in underwater wireless sensor network. In: Proceedings of the IEEE International Conference on Mobile Ad-Hoc And Sensor Networks (MSN), Shenzhen China, pp. 116–123 (2015)Google Scholar
  16. 16.
    Maurer, U.: Secret key agreement by public discussion from common information. IEEE Trans. Inform. Theory 39(3), 733–742 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lal, C., Petroccia, R., Pelekanakis, K., Conti, M., Alves, J.: Toward the development of secure underwater acoustic networks. IEEE J. Ocean. Eng. 42(4), 1075–1087 (2017)CrossRefGoogle Scholar
  18. 18.
    Guillaud, M., Slock, D.T., Knopp, R.: A practical method for wireless channel reciprocity exploitation through relative calibration. In: Proceedings of the International Symposium on Signal Processing and Its Applications Sydney, Australia, pp. 403–406 (2005)Google Scholar
  19. 19.
    Huang, Y., Zhou, S.L., Shi, Z.J., Lai, L.F.: Experimental study of secret key generation in underwater acoustic channels. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, pp. 323–327 (2014)Google Scholar
  20. 20.
    Lai, L.F., Liang, Y.B., Du, W.L.: Cooperative key generation in wireless networks. IEEE J. Sel. Areas Commun. 30(8), 1578–1588 (2012)CrossRefGoogle Scholar
  21. 21.
    Pompili, D., Akyildiz, I.F.: Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 97–102 (2009)CrossRefGoogle Scholar
  22. 22.
    Pompili, D., Melodia, T., Akyildiz, I.F.: A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Trans. Wireless Commun. 8(4), 1899–1909 (2009)CrossRefGoogle Scholar
  23. 23.
    Ateniese, G., Capossele, A., Gjanci, P., Petrioli, C., Spaccini, D.: "SecFUN: Security framework for underwater acoustic sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Genoa, Italy (2015)Google Scholar
  24. 24.
    López, J., Dahab, R.: An overview of elliptic curve cryptography. In: Technical Report, Institute of Computing, State University of Campina, Campinas, Brazil (2000)Google Scholar
  25. 25.
    Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Inf. Comput. 3(4), 317–344 (2003)MathSciNetMATHGoogle Scholar
  26. 26.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary Edition). Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, F., Safavinaini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Proceedings of the International Workshop Practice & Theory in Public Key Cryptography (PKC), Singapore, pp. 277–290 (2004)CrossRefGoogle Scholar
  28. 28.
    Dan, B., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, pp. 514–532 (2001)Google Scholar
  29. 29.
    Souza, E., Wong, H.C., Cunha, I., Loureiro, A.A.F., Vieira, L.F.M., Oliveira, L.B.: End-to-end authentication in under-water sensor networks. In: Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Split, Croatia, pp. 299–304 (2013)Google Scholar
  30. 30.
    Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, D.: SPINS: security protocols for sensor networks. In: Proc. Annual ACM International Conference on Mobile Computing and Networking (MobiCom), Rome, Italy (2001)Google Scholar
  31. 31.
    Han, G.J., Jiang, J.F., Shu, L., Guizani, M.: An attack-resistant trust model based on multidimensional trust metrics in underwater acoustic sensor network. IEEE Trans. Mob. Comput. 14(12), 2447–2459 (2015)CrossRefGoogle Scholar
  32. 32.
    Liu, Q., Liao, Y., Tang, B., Yu, L.: A trust model based on subjective logic for multi-domains in grids. In: Proceedings of the IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, pp. 882–886 (2008)Google Scholar
  33. 33.
    He, D.J., Chen, C., Chan, S., Bu, J.J., Vasilakos, A.V.: Retrust: attack-resistant and lightweight trust management for medical sensor networks. IEEE Trans. Inf. Tech. Biomed. 16(4), 623–632 (2012)CrossRefGoogle Scholar
  34. 34.
    Jiang, J.F., Han, G.J., Shu, L., Chan, S., Wang, K.: A trust model based on cloud theory in underwater acoustic sensor networks. IEEE Trans. Ind. Inf. 13(1), 342–350 (2017)CrossRefGoogle Scholar
  35. 35.
    Jiang, J.F., Han, G.J., Zhu, C.S., Chan, S., Rodrigues, J.J.P.C.: A trust cloud model for underwater wireless sensor networks. IEEE Commun. Mag. 110–116 (2017)Google Scholar
  36. 36.
    Li, D.Y., Meng, H.J., Shi, X.M.: Membership clouds and membership cloud generators. J. Comput. Res. Dev. 32(6), 15–20 (1995)Google Scholar
  37. 37.
    Cong, Y.P., Yang, G., Wei, Z.Q., Zhou, W.: Security in underwater sensor network. In: Proceedings of the International Conference on Communication and Mobile Computing (CMC), Shenzhen, China, vol. 1, pp. 162–168 (2010)Google Scholar
  38. 38.
    Domingo, M.C.: Securing underwater wireless communication networks. IEEE Wireless Commun. Mag. 22–28 (2011)CrossRefGoogle Scholar
  39. 39.
    Han, G.J., Jiang, J.F., Shu, L., Shu, L.: Secure communication for underwater acoustic sensor networks. IEEE Commun. Mag. 54–60 (2015)CrossRefGoogle Scholar
  40. 40.
    Das, A.P., Thampi, S.M.: Secure communication in mobile underwater wireless sensor networks. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, pp. 2164–2173 (2015)Google Scholar
  41. 41.
    Patron, P., Petillot, Y.: The underwater environment: a challenge for planning. In: Proceedings of the The Workshop of the UK Planning and Scheduling Special Interest Group, Edinburgh, UK (2008)Google Scholar
  42. 42.
    Kong, J., Ji, Z., Wang, W., Gerla, M., Bagrodia, R., Bhargava, B.: Low-cost attacks against packet delivery, localization and time synchronization services in under-water sensor networks. In: Proceedings of the ACM Workshop on Wireless Security (WiSe), Cologne, Germany, pp. 87–96 (2005)Google Scholar
  43. 43.
    Urich, R.: Principles of Underwater Sound. McGraw-Hill, New York (1983)Google Scholar
  44. 44.
    Misra, S., Dash, S., Khatua, M., Vasilakos, A.V., Obaidat, M.S.: Jamming in underwater sensor networks: detection and mitigation. IET Commun. 6(14), 2178–2188 (2012)CrossRefGoogle Scholar
  45. 45.
    Li, H., He, Y.H., Cheng, X.Z., Zhu, H.S., Sun, L.M.: Security and privacy in localization for underwater sensor networks. In: IEEE Commun. Mag. 56–62 (2015)Google Scholar
  46. 46.
    Bian, T., Venkatesan, R., Li, C.: Design and evaluation of a new localization scheme for underwater acoustic sensor networks. In: Proceedings of the IEEE Global Tele-communications Conference (GLOBOCOM), Hawaii, USA (2009)Google Scholar
  47. 47.
    Cheng, X.Z., Shu, H.N., Liang, Q.L., Du, D.H.-C.: Silent Positioning in Underwater Acoustic Sensor Networks. IEEE Trans. Veh. Tech. 57(3), 1756–1766 (2008)CrossRefGoogle Scholar
  48. 48.
    Shahapur, S.S., Khanai, R.: Localization, routing and its security in UWSN - A survey. In: Proceedings of the International Conference on Electrical, Electronics and Optimization Techniques (ICEEOT), Bangkok, Thailand, pp. 1001–1006 (2016)Google Scholar
  49. 49.
    Chandrasekhar, V., Seah, W.: An area localization scheme for underwater sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Singapore (2007)Google Scholar
  50. 50.
    Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. Telecommun. Syst. 22(1–4), 267–280 (2003)CrossRefGoogle Scholar
  51. 51.
    Hu, F., Malkawi, Y., Kumar, S., Xiao, Y.: Vertical and horizontal synchronization services with outlier detection in underwater acoustic networks. Wireless Commun. Mob. Comput. 8(9), 1165–1181 (2008)CrossRefGoogle Scholar
  52. 52.
    Lal, C., Petroccia, R., Conti, M., Alves, J.: Secure underwater acoustic networks: current and future research directions. In: IEEE Underwater Communications and Networking Conference (UComms), Lerici, Italy (2016)Google Scholar
  53. 53.
    Lu, X.Y., Zuba, M., Cui, J.-H., Shi, Z.J.: Uncooperative localization improves attack performance in underwater acoustic networks. In: Proceedings of the IEEE Conference on Communication and Networks Security (CNS), San Francisco, CA, USA, pp. 454–462 (2014)Google Scholar
  54. 54.
    Zuba, M., Shi, Z.J., Peng, Z., Cui, J.H., Zhou, S.L.: Vulnerabilities of underwater acoustic networks to denial-of-service jamming attacks. Secur. Commun. Net. 8(16), 2635–2645 (2015)CrossRefGoogle Scholar
  55. 55.
    Li, X., Han G.J., Qian, A.H., Rodrigues, J.: Detecting Sybil attack based on state information in underwater wireless sensor networks. In: Proceedings of the IEEE International Conference on Software, Telecommunication and Computer Networks (SoftCOM), Primosten, Croatia, (2013)Google Scholar
  56. 56.
    Ibragimov, M., Lee, J.-H.: Kalyani, M., il Namgung, J., Park, S.-H., Yi, O., Kim, C.H., Lim, Y.-K.: CCM-UW security modes for low-band underwater acoustic sensor networks. Wireless Pers. Commun. 89(2), 479–499 (2016)CrossRefGoogle Scholar
  57. 57.
    Li, M., Batalama, S.N., Pados, D.A., Melodia, T., Medley, M.J.: Cognitive code-division links with blind primary-system identification. IEEE Trans. Wireless Commun. 10(11), 3743–3753 (2011)CrossRefGoogle Scholar
  58. 58.
    Katti, S., Gollakota, S., Katabi, D.: Embracing wireless interference: analog network coding. In: Proceedings of the ACM SIGCOMM, Kyoto, Japan, pp. 397–408(2007)CrossRefGoogle Scholar
  59. 59.
    Wang, W.C., Kong, J.J., Bhargava, B., Gerla, M.: Visualisation of wormholes in underwater sensor networks: a distributed approach. Int. J. Secur. Netw. 3(1), 10–23 (2008)CrossRefGoogle Scholar
  60. 60.
    Zhang, R., Zhang, Y.C.: Wormhole-resilient secure neighbor discovery in underwater acoustic networks. In: Proceedings of he IEEE INFOCOM, San Diego, CA, USA (2010)Google Scholar
  61. 61.
    Papadimitratos, P., Poturalski, M., Schaller, P., Lafourcade, P.: Secure neighborhood discovery: a fundamental element for mobile ad hoc networking. IEEE Commun. Mag. 46(2), 132–139 (2008)CrossRefGoogle Scholar
  62. 62.
    Basagni, S., Petrioli, C., Petroccia, R., Spaccini, D.: CARP: a channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Netw. 34, 92–104 (2015)CrossRefGoogle Scholar
  63. 63.
    Rustad, H.: A lightweight protocol suite for underwater communication. In: Proceedings of the International Conference on Advanced Information Networking and Applications WS. (WAINA), Bradford, UK, pp. 1172–1178 (2009)Google Scholar
  64. 64.
    Dini, G., Duca, A.L.: SeFLOOD: a secure network discovery protocol for underwater acoustic networks. In: Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Kerkyra, Greece, pp. 636–638 (2011)Google Scholar
  65. 65.
    Barker, E., Johnson, D., Smid, M.: Recommendation for pairwise key establishment schemes using discrete logarithm cryptography. Eetimes Com, 15158 (2014)Google Scholar
  66. 66.
    Blundo, C., Santis, A.D., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-secure key distribution for dynamic conferences. In: Proceedings of the Annual International Cryptology Conference on Advances in Cryptology (CRYPTO), California, USA, pp. 471–486 (1993)CrossRefGoogle Scholar
  67. 67.
    Capossele, A., Cicco, G.D., Petrioli, C.: R-CARP: a reputation based channel aware routing protocol for underwater acoustic sensor networks. In: Proceedings of the ACM International Conference Underwater Networks and Systems (WUWNet), Arlington, VA, USA (2015)Google Scholar
  68. 68.
    Dini, G., Duca, A.L.: A cryptographic suite for underwater cooperative applications. In: Proceedings of the IEEE Symposium Computers and Communications (ISCC), Kerkyra, Greece, pp. 870–875 (2011)Google Scholar
  69. 69.
    Toso, G., Munaretto, D., Conti, M., Zorzi, M.: Attack resilient underwater networks through software defined networking. In: Proceedings of the ACM International Conference on Underwater Networks and Systems (WUWNet), Rome, Italy (2014)Google Scholar
  70. 70.
    Caiti, A., Calabro, V., Dini, G., Duca, A.L., Munafo, A.: Secure cooperation of autonomous mobile sensors using an underwater acoustic network. Sensors 12(2), 1967–1989 (2012)CrossRefGoogle Scholar
  71. 71.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1995)MATHGoogle Scholar
  72. 72.
    Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for wireless sensor networks. In: Proceedings of the International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, pp. 162–175 (2004)Google Scholar
  73. 73.
    Dini, G., Savino, I.M.: S2RP: a secure and scalable rekeying protocol for wireless sensor networks. In: Proceedings of the IEEE International Conference Mobile Ad-Hoc and Sensor Systems Vancouver, BC, Canada, pp. 457–466 (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations