Advertisement

Transfer Reliability Control in UWANs

  • Shengming Jiang
Chapter

Abstract

Reliable data transfer attempts to guarantee a destination node to receive successfully what has been sent to it. What leading to reception failures include poor channel quality due to interference and fading, congestion causing data loss, and collision leading to data corruption as well as network attacks deviating to data forwarding. This chapter will introduce some typical reliable transfer schemes proposed for the data link layer, the network layer and the transport layer. Network attacks will be discussed with network security in Chap.  13.

References

  1. 1.
    Stojanovic, M.: Optimization of a data link protocol for an underwater acoustic channel. In: Proceedings of the MTS/IEEE OCEANS, Washington, DC, USA (2005)Google Scholar
  2. 2.
    Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, California, USA (2006)Google Scholar
  3. 3.
    Proakis, J.G., Sozer, E.M., Rice, J.A., Stojanovic, M.: Shallow water acoustic networks. IEEE Commun. Mag. 39(11), 114–119 (2001)CrossRefGoogle Scholar
  4. 4.
    Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient erasure correcting codes. IEEE Trans. Inform. Theory 47(2), 569–584 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bassoli, R., Marques, H., Rodriguez, J., Shum, K.W., Tafazolli, R.: Network coding theory: a survey. IEEE Commun. Surv. Tutor. 15(4), 1950–1978, Fourth Quarter (2013)CrossRefGoogle Scholar
  6. 6.
    Fong, S.L., Yeung, R.W.: Variable-rate linear network coding. IEEE Trans. Inform. Theory 56(6), 2618–2625 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiang, S.M.: On reliable data transfer in underwater acoustic networks: a survey from networking perspective. IEEE Commun. Surv. Tutor. PP, 99 (2018)Google Scholar
  8. 8.
    Zhao, N., Richard Yu, F., Jin, M.L., Yan, Q., Leung, V.C.M.: Interference alignment and its applications: a survey, research issues, and challenges. IEEE Commun. Surv. Tutor. 18(3), 1779–1803, Third Quarter (2016)CrossRefGoogle Scholar
  9. 9.
    Boukalov, A.O., Häggman, S.-G.: System aspects of smart-antenna technology in cellular wireless communications an overview. IEEE Trans. Microwave Theory Tech. 48(6), 919–928 (2000)CrossRefGoogle Scholar
  10. 10.
    Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  11. 11.
    Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D., Stemann, V.: Practical loss-resilient codes. In: Proceedings of the annual ACM symposium theory of computing (STOC), El Paso, TX, USA, pp. 150–159 (1997)Google Scholar
  12. 12.
    Maymounkov, P., Mazieres, D.: Rateless codes and big downloads. In: Proceedings of the International WS Peer-to-Peer Systems in Berkley, USA (2003)CrossRefGoogle Scholar
  13. 13.
    Luby, M.: LT codes. In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science (FOCS), Washington, DC, USA, pp. 271–280 (2002)Google Scholar
  14. 14.
    Shokrollahi, A.: Raptor codes. IEEE Trans. Inform. Theory 52(6), 2551–2567 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schwartz, M.: Telecommunication Networks, Protocols. Modeling and Analysis. Addison-Wesley Publishing Company, Massachusetts, USA (1987)Google Scholar
  16. 16.
    Gao, M.S., Soh, W.-S., Tao, M.X.: A transmission scheme for continuous ARQ protocols over underwater acoustic channels. In: Proceedings of the IEEE International Conference on Communications (ICC), Dresden, Germany (2009)Google Scholar
  17. 17.
    Chitre, M., Soh, W.-S.: Reliable point-to-point underwater acoustic data transfer: to juggle or not to juggle? IEEE J. Ocean. Eng. 40(1), 93–103 (2015)CrossRefGoogle Scholar
  18. 18.
    Jiang, J.F., Han, G.J., Zhu, C.S., Chan, S., Rodrigues, J.J.P.C.: A trust cloud model for underwater wireless sensor networks. IEEE Commun. Mag. 110–116 (2017)Google Scholar
  19. 19.
    Azad, S., Casari, P., Guerra, F., Zorzi, M.: On ARQ strategies over random access protocols in underwater acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Santander, Spain (2011)Google Scholar
  20. 20.
    Azad, S., Casari, P., Zorzi, M.: The underwater selective repeat error control protocol for multiuser acoustic networks: design and parameter optimization. IEEE Trans. Wireless Commun. 12(10), 4866–4877 (2013)CrossRefGoogle Scholar
  21. 21.
    Rizzo, L.: Effective erasure codes for reliable computer communication protocols. ACM SIGCOMM Comput. Commun. Rev. (CCR) 27(2), 24–36 (1997)CrossRefGoogle Scholar
  22. 22.
    Yu, J., Chen, H., Xie, L., Cui, J.-H.: Performance analysis of hybrid ARQ schemes in underwater acoustic networks. In: Proceedings of the St. John’s, MTS/IEEE OCEANS (2014)Google Scholar
  23. 23.
    Lin, A.J., Chen, H.F., Xie, L.: Performance analysis of ARQ protocols in multiuser underwater acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Washington, USA (2015)Google Scholar
  24. 24.
    MacKay, D.J.C.: Fountain codes. IEE Proc. Commun. 152(6), 1062–1068 (2005)CrossRefGoogle Scholar
  25. 25.
    Casari, P., Tomasi, P., Zorzi, M.: Towards optimal broadcasting policies for HARQ based on Fountain codes in underwater networks. In: Proceedings of the IEEE/IFIP Wireless On-demand Network System and Services (WONS), Garmisch-Partenkirchen, Germany (2008)Google Scholar
  26. 26.
    Zhou, Z., Mo, H., Zhu, Y., Peng, Z.: Fountain code based adaptive multi-hop reliable data transfer for underwater acoustic networks. In: Proceedings of the IEEE International Conference on Communications (ICC), Ottawa, Canada, pp. 6396–6400 (2012)Google Scholar
  27. 27.
    Fragouli, C., Boudec, J.-Y.L., Widmer, J.: Network coding: an instant primer. ACM SIGCOMM Computer Communication Review (CCR) (2006)CrossRefGoogle Scholar
  28. 28.
    Guo, Z., Xie, P., Cui, J.-H., Wang, B.: On applying network coding to underwater sensor networks. In: Proceedings of the ACM Internatinal WS. Underwater Networks (WUWNet), Los Angeles, USA, pp. 109–112 (2006)Google Scholar
  29. 29.
    Xie, P., Cui, J.-H.: VBF: vector-based forwarding protocol for underwater sensor networks. In: Proceedings of the IFIP Networking Conferences on Coimbra, Portugal, pp. 1216–1221 (2006)CrossRefGoogle Scholar
  30. 30.
    Guo, Z., Wang, B., Cui, J.-H.: Efficient error recovery using network coding in underwater sensor networks. In: Proceedings of the IFIP Networking Conferences Atlanta, Georgia, USA, pp. 109–112 (2006)Google Scholar
  31. 31.
    Guo, Z., Wang, B., Xie, P., Zeng, W., Cui, J.-H.: Efficient error recovery with network coding in underwater sensor networks. Ad Hoc Netw. 7(4), 791–802 (2009)CrossRefGoogle Scholar
  32. 32.
    Huang, C.-Y., Ramanathan, P., Saluja, K.: Routing TCP flows in underwater mesh networks. IEEE J. Sel. Areas Commun. 29(10), 2022–2032 (2011)CrossRefGoogle Scholar
  33. 33.
    Lee, J.W., Cheon, J.Y., Cho, H.S.: A cooperative ARQ scheme in underwater acoustic sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Sydney, Australia (2010)Google Scholar
  34. 34.
    Lee, J.W., Cho, H.S.: A cooperative ARQ scheme for multi-hop underwater acoustic sensor networks. In: Proceedings of IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Tech, Tokyo, Japan (2011)Google Scholar
  35. 35.
    Lee, J.W., Kim, J.P., Shen, J.H., Jiang, Y.S., Cheol, K., Son, K., Cho, H.S.: An improved ARQ scheme in underwater acoustic sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Kobe, Japan (2008)Google Scholar
  36. 36.
    Casari, P., Harris, A.F., III: Energy-efficient reliable broadcast in underwater acoustic networks. In: Proceedings of the ACM International WS. Underwater Networks (WUWNet), Montreal, Canada, pp. 49–56 (2007)Google Scholar
  37. 37.
    Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)Google Scholar
  38. 38.
    Wang, P., Li, J.H., Zhang, X.: Adaptive RTT-driven transport-layer flow and error control protocol for QoS guaranteed image transmission over multi-hop underwater wireless networks: design, implementation, and analysis. In:Proceedings of the IEEE International Conferences on Communications (ICC), Sydney, Australia, pp. 5142–5147 (2014)Google Scholar
  39. 39.
    Wang, P., Wang, T.: Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the IEEE International Conference of Computer and Information Technology, Seoul, Korea (2006)Google Scholar
  40. 40.
    Hu, T.S., Fei, Y.S.: QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9(6), 796–809 (2010)CrossRefGoogle Scholar
  41. 41.
    Otnes, R., Asterjadhi, A., Casari, P., Goetz, M., Husøy, T., Nissen, I., Rimstad, K., van Walree, P., Zorzi, M.: Underwater Acoustic Networking Techniques. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations