Advertisement

Routing in UWANs

  • Shengming Jiang
Chapter

Abstract

This chapter reviews some typical UWAN routing protocols in terms of routing strategies, key issues addressed and basic idea of the proposed schemes as well as their feasibility in UWANs, according to the typical application scenarios of underwater networks.

References

  1. 1.
    Noh, Y., Lee, U., Wang, P., Choi, B.S.C., Gerla, M.: VAPR: void-aware pressure routing for underwater sensor networks. IEEE Trans. Mob. Comput. 12(5), 895–908 (2013)CrossRefGoogle Scholar
  2. 2.
    Otnes, R., Asterjadhi, A., Casari, P., Goetz, M., Husøy, T., Nissen, I., Rimstad, K., van Walree, P., Zorzi, M.: Underwater Acoustic Networking Techniques. Springer, Germany (2012)CrossRefGoogle Scholar
  3. 3.
    Basagni, S., Petrioli, C., Petroccia, R., Spaccini, D.: Channel-aware routing for underwater wireless networks. In: Proceedings of the MTS/IEEE OCEANS, Yeosu, Korea (2012)Google Scholar
  4. 4.
    Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)Google Scholar
  5. 5.
    Zorzi, M., Casari, P., Baldo, N., Harris, A.F.: Energy-efficient routing schemes for underwater acoustic networks. IEEE J. Sel. Areas Commun. 26(9), 1754–1766 (2008)CrossRefGoogle Scholar
  6. 6.
    Souiki, S., Feham, M., Feham, M., Labraoui, N.: Geographic routing protocols underwater wireless sensor networks: surveys. Int. J. Mob. Netw. (IJWMN) 6(1), 69–87 (2014)Google Scholar
  7. 7.
    Li, N., Martíłnez, J.-F., Chaus, J.M.M., Eckert, M.: A survey on underwater acoustic sensor network routing protocols. Sensors 16(414), 1–28 (2016)Google Scholar
  8. 8.
    Lu, Q., Liu, F., Zhang, Y., Jiang, S.M.: Routing protocols for underwater acoustic sensor networks: a survey from an application perspective. In: Zak, A. (ed.), Advances in Underwater Acoustics. INTECH (2017). ISBN 978-953-51-3609-5Google Scholar
  9. 9.
    Xie, G.G., Gibson, J.H.: A network layer protocol for UANs to address propagation delay induced performance limitations. In: Proceedings of the MTS/IEEE OCEANS, Honolulu, HI, USA, pp. 2087–2094 (2001)Google Scholar
  10. 10.
    Chen, Y., Zhang, S.Q., Xu, S.G., Li, G.Y.: Fundamental trade-offs on green wireless networks. IEEE Commun. Mag. 49(6), 30–37 (2011)CrossRefGoogle Scholar
  11. 11.
    Xie, P., Cui, J.-H.: VBF: vector-based forwarding protocol for underwater sensor networks. In Proceedings of the IFIP Networking Conferences on Coimbra, Portugal, pp. 1216–1221 (2006)CrossRefGoogle Scholar
  12. 12.
    Seah, W.K.G., Tan, H.X., Liu, Z., Ang, M.H.: Multiple-UUV approach for enhancing connectivity in underwater ad-hoc sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Washington, DC, USA 2, 2263–2268 (2005)Google Scholar
  13. 13.
    Casari, P., Asterjadhi, A., Zorzi, M.: On channel aware routing policies in shallow water acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Waikoloa, Hawaii, USA (2011)Google Scholar
  14. 14.
    Guo, Z., Colombit, G., Wang, B., Cui, J.-H., Maggiorinit, D., Rossit, G.P.: Adaptive routing in underwater delay/disruption tolerant sensor networks. In: Proceedings of the Annual Conferences on Wireless on Demand Network Systems and Services (WONS), Garmisch-Partenkirchen, pp. 31–39 (2008)Google Scholar
  15. 15.
    Vieira, L.F.M., Lee, U., Gerla, M.: Phero-trail: a bio-inspired location service for mobile underwater sensor networks. IEEE J. Sel. Areas Commun. 28(4), 553–563 (2010)CrossRefGoogle Scholar
  16. 16.
    Yan, H., Shi, Z., Cui, J.-H.: DBR: depth-based routing for underwater sensor networks. In: Proceedings of the IFIP Networking Conference, Singapore pp. 72–86 (2008)CrossRefGoogle Scholar
  17. 17.
    Chen, B.Z., Hickey, P.C., Pompili, D.: Trajectory-aware communication solution for underwater gliders using WHOI micro-modems. In: Proceedings of the Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Boston, USA, 2010Google Scholar
  18. 18.
    Lindgren, A., Doria, A., Davies, E., Grasic, S.: Probabilistic routing protocol for intermittently connected networks. Internet Research Task Force (IRTF) (2012)Google Scholar
  19. 19.
    Rice, J.A., Ong, C.W.: A discovery process for initializing underwater acoustic networks. In: Proceedings of the International Conference on Sensor Device Technologies and Applications (SENSORCOMM), Venice, pp. 408–415 (2010)Google Scholar
  20. 20.
    Nicolaou, N., See, A., Cui, J.-H., Maggiorini, D.: Improving the robustness of location-based routing for underwater sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Aberdeen, UK, pp. 1–6 (2007)Google Scholar
  21. 21.
    Lee, U., Wang, P., Noh, Y., Vieira, L.F.M., Gerla, M., Cui, J.-H.: Pressure routing for underwater sensor networks. In: Proceedings of the IEEE INFOCOM, San Diego, CA, USA, pp. 1–9 (2010)Google Scholar
  22. 22.
    Zhang, S., Li, D.S.: A beam width and direction concerned routing for underwater acoustic sensor networks. In: Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Networks, Dalian, China, pp. 17–24 (2013)Google Scholar
  23. 23.
    Zhang, S., Li, D.S., Chen, J.: A link-state based adaptive feedback routing for underwater acoustic sensor networks. IEEE SENSORS J. 13(11), 4402–4412 (2013)CrossRefGoogle Scholar
  24. 24.
    Jiang, S.M. (2018) On reliable data transfer in underwater acoustic networks: a survey from networking perspective. IEEE Commun. Surv. Tutor. PP, 99 (2018)Google Scholar
  25. 25.
    Ogier, R.G., Rutenburg, V., Shacham, N.: Distributed algorithms for computing shortest pairs of disjoint paths. IEEE Trans. Inf. Theory 39(2), 443–455 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lal, C., Laxmi, V., Gaur, M.S.: A node-disjoint multipath routing method based on AODV protocol for MANETs. In: Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), Fukuoka, Japan, pp. 399–405 (2012)Google Scholar
  27. 27.
    Azad, S., Casari, P., Zorzi, M.: Multipath routing with limited cross-path interference in underwater networks. IEEE Wireless Commun. Lett. 3(5), 465–468 (2014)CrossRefGoogle Scholar
  28. 28.
    Marina, M.K., Das, S.R.: Ad hoc on-demand multipath distance vector routing. Wireless Commun. Mob. Comput. 6, 969–988 (2006)CrossRefGoogle Scholar
  29. 29.
    Goetz, M., Azad, S., Casari, P., Nissen, I., Zorzi, M.: Jamming-resistant multi-path routing for reliable intruder detection in underwater networks. In: Proceedings of the ACM International Conference on Underwater Networks and Systems (WUWNet), Seattle, WA, USA (2011)Google Scholar
  30. 30.
    Chen, Y.-S., Juang, T.-Y., Lin, Y.-W., Tsai, I.-C.: A low propagation delay multi-path routing protocol for underwater sensor networks. J. Internet Tech. 11(2), 153–165 (2010)Google Scholar
  31. 31.
    Zhou, Z., Peng, Z., Cui, J.-H., Shi, Z.: Efficient multipath communication for time-critical applications in underwater acoustic sensor networks. ACM/IEEE Trans. Netw. 19(1), 28–41 (2011)CrossRefGoogle Scholar
  32. 32.
    Jornet, J.M., Stojanovic, M., Zorzi, M.: Focused beam routing protocol for underwater acoustic networks. In: Proceedings of the ACM International WS. Underwater Networks (WUWNet), San Francisco, USA, pp. 75–82 (2008)Google Scholar
  33. 33.
    Jornet, J.M., Stojanovic, M., Zorzi, M.: On Joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks. IEEE J. Ocean. Eng. 35(4), 936–947 (2010)CrossRefGoogle Scholar
  34. 34.
    Chen, Y.-S., Lin, Y.-W.: Mobicast routing protocol for underwater sensor networks. IEEE SENSORS J. 13(2), 737–749 (2013)CrossRefGoogle Scholar
  35. 35.
    Chirdchoo, N., Soh, W.S., Chua, K.C.: Sector-based routing with destination location prediction for underwater mobile networks. In: Proceedings of the International Conference on Advanced Information Networking and Applications Workshops (WAINA), Bradford, UK, pp. 1148–1153 (2009)Google Scholar
  36. 36.
    Wang, J.C., Li, D.S., Zhou, M., Ghosal, D.: Data collection with multiple mobile actors in underwater sensor networks. In: International Conference on Distributed Computing Systems (Workshop), Beijing, China, pp. 216–221 (2008)Google Scholar
  37. 37.
    Shah, P.M., Ullah, I., Khan, T., Hussain, M.S., Khan, Z.A., Qasim, U., Javaid, N.: MobiSink: cooperative routing protocol for underwater sensor networks with sink mobility. In: Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland (2016)Google Scholar
  38. 38.
    Emokpae, L., Younis, M., Signal reflection-enabled geographical routing for underwater sensor networks. In: Proceedings of the IEEE International Conference on Communication (ICC), Ottawa, Canada, pp. 147–151 (2012)Google Scholar
  39. 39.
    Hu, T.S., Fei, Y.S.: QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9(6), 796–809 (2010)CrossRefGoogle Scholar
  40. 40.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, pp. 688–698. The MIT Press (1998)Google Scholar
  41. 41.
    Wang, P., Wang, T.: Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the IEEE International Conference on Computer and Information Technology, Seoul, Korea (2006)Google Scholar
  42. 42.
    Hu, T.S., Fei, Y.S.: QELAR: a q-learning-based energy-efficient and lifetime-aware routing protocol for underwater sensor networks. In: Proceedings of the IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, Texas, USA, pp. 247–255 (2008)Google Scholar
  43. 43.
    Hu, T.S., Fei, Y.S.: MURAO: a multi-level routing protocol for acoustic-optical hybrid underwater wireless sensor network. In: Proceedings of the Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, pp. 218–226 (2012)Google Scholar
  44. 44.
    Hu, T.S., Fei, Y.S.: An adaptive routing protocol based on connectivity prediction for underwater disruption tolerant networks. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBOCOM), Atlanta, USA, pp. 65–71 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations