Advertisement

Abstract

The peculiar features of underwater communications cause MAC protocols proposed for RWNs unable to be used directly in UWANs, and many research results on UWAN MAC protocols are reported in the literature. This chapter reviews typical UWAN MAC protocols following the MAC reference model discussed in Chap.  3. The main reference for this chapter is (Jiang, IEEE Commun Surv Tutor, 2018, [1]).

References

  1. 1.
    Jiang, S.M.: State-of-the-art medium access control (MAC) protocols for underwater acoustic networks: a survey based on a MAC reference model. IEEE Commun. Surv. Tutor 20(1), 1st Quarter (2018)CrossRefGoogle Scholar
  2. 2.
    Syed, A.A., Ye, W., Krishnamachari, B., Heidemann, J.: Understanding spatio-temporal uncertainty in medium access with ALOHA protocols. In Proceedings of the ACM International WS, Underwater Networks (WUWNet), Montreal, Canada (2007)Google Scholar
  3. 3.
    Syed, A.A., Heidemann, J.: Contention analysis of MAC protocols that count. In: Proceedings of the ACM International Conferences Underwater Networks and Systems (WUWNet), Woods Hole, USA (2010)Google Scholar
  4. 4.
    Preisig, J.: Acoustic propagation considerations for underwater acoustic communications network development. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)Google Scholar
  5. 5.
    Stojanovic, M.: Underwater acoustic communications: design considerations on the physical layer. In: Proceedings of the Annual Conferences Wireless on Demand Network Systems and Services (WONS), Garmisch-Partenkirchen (2008)Google Scholar
  6. 6.
    Lanzagorta, M.: Underwater communications. MORGAN and CLAYPOOL (2012)CrossRefGoogle Scholar
  7. 7.
    Tomasi, B., Toso, G., Casari, P., Zorzi, M.: Impact of time-varying underwater acoustic channels on the performance of routing protocols. IEEE J. Ocean. Eng. 38(4), 772–784 (2013)CrossRefGoogle Scholar
  8. 8.
    Kodithuwakku, J., Letzepis, N., McKilliam, R., Grant, A.J.: Decoder-assisted timing synchronization in multiuser CDMA systems. IEEE Trans. Commun. 62(6), 2061–2071 (2014)CrossRefGoogle Scholar
  9. 9.
    Pompili, D., Akyildiz, I.F.: Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 97–102 (2009)Google Scholar
  10. 10.
    Melodia, T., Kulhandjian, H., Kuo, L.-C., Demirors, E.: Advances in underwater acoustic networking. In: Basagni, S., Conti, M., Giordano, S., Stojmenovic, I. (eds.), Mobile Ad Hoc Networking: The Cutting Edge Directions, pp. 804 – 852. Wiley-IEEE Press (2013)Google Scholar
  11. 11.
    Freitag, L., Grund, M., Singh, S., Partan, J., Koski, P., Ball, K.: The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. Proceedings of the MTS/IEEE OCEANS, Washington, DC, USA 2, 1086–1092 (2005)Google Scholar
  12. 12.
    Liao, W.-H., Huang, C.-C.: SF-MAC: a spatially fair MAC protocol for underwater acoustic sensor networks. IEEE Sens. J. 12(6), 1686–1694 (2012)CrossRefGoogle Scholar
  13. 13.
    Rice, J., Creber, B., Fletcher, C., Baxley, P., Rogers, K., McDonald, K., Rees, D., Wolf, M., Merriam, S., Mehio, R., Proakis, J., Scussel, K., Porta, D., Baker, J., Hardiman, J., Green, D.: Evolution of Seaweb underwater acoustic networking. Proceedings of the MTS/IEEE OCEANS, Providence, RI, USA 3, 2007–2017 (2000)Google Scholar
  14. 14.
    Pompili, D., Melodia, T., Akyildiz, I.F.: A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 8(4), 1899–1909 (2009)CrossRefGoogle Scholar
  15. 15.
    Xie, G.G., Gibson, J.A.: A networking protocol for underwater acoustic networks. Technical Report OMB No. 0704-0188, CS Department, Naval Postgraduate School, 2000Google Scholar
  16. 16.
    Hong, L., Hong, F., Guo, Z.W., Yang, X.H.: A TDMA-based MAC protocol in underwater sensor networks. In: Proceedings of the International Conferences on Wireless Communications, Networking and Mobile Computing (WiCOM), Dalian, China, pp. 1–4 (2008)Google Scholar
  17. 17.
    Hayajneh, M., Khalil, I., Gadallah, Y.: An OFDMA-based MAC protocol for underwater acoustic wireless sensor networks. In Proceedings of the International Conference on Wireless Communications and Mobile Computing and Mobile Computing (IWCMC), pp. 810–814 (2009)Google Scholar
  18. 18.
    Guerra, F., Casari, P., Zorzi, M.: World ocean simulation system (WOSS): a simulation tool for underwater networks with realistic propagation modeling. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Berkeley, USA (2009)Google Scholar
  19. 19.
    Parrish, N., Roy, S., Arabshahi, P., Fox, W.: System design considerations for undersea networks: link and multiple access protocols. IEEE J. Sel. Areas Commun. 26(9), 1720–1730 (2008)CrossRefGoogle Scholar
  20. 20.
    Chen, Y.-D., Liu, S.-S., Chang, C.M., Shih, K.-P.: CS-MAC: a channel stealing MAC protocol for improving bandwidth utilization in underwater wireless acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Waikoloa, Hawaii, USA (2011)Google Scholar
  21. 21.
    Favaro, F., Azad, S., Casari, P., Zorzi, M.: Extended abstract: on the performance of unsynchronized distributed MAC protocols in deep water acoustic networks. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Seatle, USA (2011)Google Scholar
  22. 22.
    Peleato, B., Stojanovic, M.: Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks. IEEE Commun. Lett. 11(12), 1025–1027 (2007)CrossRefGoogle Scholar
  23. 23.
    Guo, X.X., Frater, M.R., Ryan, M.J.: A propagation-delay-tolerant collision avoidance protocol for underwater acoustic sensor networks. In: Proceedings of the OCEANS - Asia Pacific, Boston, MA, USA (2006)Google Scholar
  24. 24.
    Molins, M., Stojanovic, M.: Slotted FAMA: a MAC protocol for underwater acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Boston, MA, USA (2006)Google Scholar
  25. 25.
    Zhou, Z., Peng, Z., Cui, J.-H., Jiang, Z.: Handling triple hidden terminal problems for multichannel mac in long-delay underwater sensor networks. IEEE Trans. Mob. Comput. 11(1), 139–154 (2012)CrossRefGoogle Scholar
  26. 26.
    Hsu, C.-C., Lai, K., Chou, C.-F., Lin, K.C.: ST-MAC: spatial-temporal MAC scheduling for underwater sensor networks. In: Proceedings of the IEEE INFOCOM Rio de Janeiro, Brasil, pp. 1827–1835 (2009)Google Scholar
  27. 27.
    Luo, Y., Pu, L., Peng, Z., Zhou, Z., Cui, J.-H.: CT-MAC: A MAC protocol for underwater MIMO based network uplink communications. In: Proceedings of the ACM International Conferences on Underwater Networks and Systems (WUWNet), Los Angeles, USA (2012)Google Scholar
  28. 28.
    Zhou, Z., Le, S., Cui, J.H.: An OFDM based MAC protocol for underwater acoustic networks. In: Proceedings of the ACM International Conference Underwater Networks and Systems (WUWNet), Woods Hole, USA (2010)Google Scholar
  29. 29.
    Sozer, E.M., Stojanovic, M., Proakis, J.G.: Underwater acoustic networks. IEEE J. Ocean. Eng. 25(1), 72–83 (2000)CrossRefGoogle Scholar
  30. 30.
    Catipovic, J., Brady, D., Etchenmendy, S.: Development of underwater acoustic modems and networks. Oceanography 6(3), 112–119 (1993)CrossRefGoogle Scholar
  31. 31.
    Gibson, J., Larraza, A., Rice, J., Smith, K., Xie, G.: On the impacts and benefits of implementing full-duplex communications links in an underwater acoustic network. In: Proceedings of the International Mine Symposium Monterey, CA, USA, pp. 204–213 (2002)Google Scholar
  32. 32.
    Khalil, I., Gadallah, Y., Khreishah, M.H.: An adaptive OFDMA based MAC protocol for underwater acoustic wireless sensor networks. Sensors 12(7), 8782–8805 (2012)CrossRefGoogle Scholar
  33. 33.
    So, J., Vaidya, N.: Multi-channel MAC for Ad Hoc networks: handling multi-channel hidden terminals using a single transceiver. In: Proceedings of the Annual ACM International Conferences on Mobile Computing and Network (MobiCom), Philadelphia, USA, pp. 222–233 (2004)Google Scholar
  34. 34.
    Syed, A.A., Ye, W., Heidemann, J.: T-Lohi: a new class of MAC protocols for underwater acoustic sensor networks. In: Proceedings of the IEEE INFOCOM, Phoenix, Arizona, USA, pp. 789–797 (2008)Google Scholar
  35. 35.
    Wei, X., Zhao, L., Li, X., Zou, C.R.: A distributed power control based MAC protocol for underwater acoustic sensor networks. In: Proceedings of the IEEE International Conferences on Circuits and Systems for Communications (ICCSC), pp. 688 – 692 (2008)Google Scholar
  36. 36.
    You, L.N., Jiang, S.M., Wei, G.: A multi-channel MAC using no dedicated control channels for wireless mesh networks. In: Prof. International Conference on Wireless Communication and Signaling Processing (WCSP), Nanjing, China, pp. 2996–3000 (2009)Google Scholar
  37. 37.
    Ahn, J., Krishnamachari, B.: Performance of propagation delay tolerant ALOHA protocol for underwater wireless networks. In: Nikoletseas, S., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.), Distributed Computing in Sensor Systems (DCOSS). LNCS, vol. 5067, pp. 1–26. Springer, Berlin (2008)Google Scholar
  38. 38.
    Basagni, S., Petrioli, C., Petroccia, R., Stojanovic, M.: Choosing the packet size in multi-hop underwater networks. In: Proceedings of the MTS/IEEE OCEANS, Sydney, Australia (2010)Google Scholar
  39. 39.
    Stojanovic, M.: Optimization of a data link protocol for an underwater acoustic channel. In: Proceedings of the MTS/IEEE OCEANS, Washington, DC, USA (2005)Google Scholar
  40. 40.
    Vieira, L.F.M., Kong, J., Lee, U., Gerla, M.: Analysis of ALOHA protocols for underwater acoustic sensor networks. In: Proceedings of the ACM International WS, Underwater Networks (WUWNet), Los Angeles, USA (2006)Google Scholar
  41. 41.
    De, S., Mandal, P., Chakraborty, S.S.: On the characterization of ALOHA in underwater wireless networks. Math. Comput. Model. 53(11–12), 2093–2107 (2011)CrossRefGoogle Scholar
  42. 42.
    Su, R.Y., Venkatesan, R., Li, C.: Acoustic propagation properties of underwater communication channels and their influence on the medium access control protocols. In: Proceedings of the IEEE International Conferences on Communication (ICC), Ottawa, Canada, pp. 5015–5019 (2012)Google Scholar
  43. 43.
    Gibson, J.H., Xie, G.G., Xiao, Y., Chen, H.: Analyzing the performance of multi-hop underwater acoustic sensor networks. In: Proceedings of the OCEANS, Europe, Aberdeen, UK (2007)Google Scholar
  44. 44.
    Xiao, Y., Zhang, Y.P., Gibson, J.H., Xie, G.G.: Performance analysis of p-persistent aloha for multi-hop underwater acoustic sensor networks. In: Proceedings of the International Conferences on Embedded Software and System (ICESS), Zhejiang, China, pp. 305–311 (2009)Google Scholar
  45. 45.
    Zhang, Y.P.: Performance of p-persistent slotted Aloha for underwater sensor networks. In: International Conference on Computing, Networking and Communication (ICNC), Honolulu, USA, Feb. 2014, pp. 583–587Google Scholar
  46. 46.
    Xie, P., Cui, J.-H.: Exploring random access and handshaking techniques in large-scale underwater wireless acoustic sensor networks. In: Proceedings of the MTS/IEEE OCEANS, Boston, MA, USA (2006)Google Scholar
  47. 47.
    Climent, S., Sanchez, A., Capella, J.V., Serrano, J.J.: Simulating MAC protocols under real underwater sensor networks assumptions. In: Proceedings of the ACM International Conferences on Underwater Networks and Systems (WUWNet), Los Angeles, USA (2012)Google Scholar
  48. 48.
    Casari, P., Tomasi, B., Zorzi, M.: A Comparison between the Tonelohi and Slotted FAMA MAC protocols for Underwater Networks. In: Proceedings of the MTS/IEEE OCEANS, Quebec City, Canada, pp. 381–384 (2008)Google Scholar
  49. 49.
    Petrioli, C., Petroccia, R., Potter, J.: Performance evaluation of underwater MAC protocols: from simulation to at-sea testing. In: Proceedings of the MTS/IEEE OCEANS, Santander, Spain, pp. 1–10 (2011)Google Scholar
  50. 50.
    Shahabudeen, S., Motani, M.: Short paper: performance analysis of a MACA based Protocol for Adhoc underwater networks. In: Proceedings of the ACM Internatinal WS, Underwater Networks (WUWNet), Berkeley, USA (2009)Google Scholar
  51. 51.
    Shahabudeen, S., Motani, M., Chitre, M.: Analysis of a high-performance MAC protocol for underwater acoustic networks. IEEE J. Ocean. Eng. 39(1), 74–89 (2014)CrossRefGoogle Scholar
  52. 52.
    Yang, M., Gao, M.S., Foh, C.H., Cai, J.F.: DC-MAC: a data-centric multi-hop MAC protocol for underwater acoustic sensor networks. In: Proceedings of the IEEE International Symposium on Computers and Communications/ (ISCC)., Kerkyra, pp. 491–496 (2011)Google Scholar
  53. 53.
    Zhu, Y.B., Jiang, Z.H., Peng, Z., Zuba, M.: Toward practical MAC design for underwater acoustic networks. In: Proceedings of the IEEE INFOCOM, Turin, pp. 683–691 (2013)Google Scholar
  54. 54.
    Noh, Y., Wang, P., Lee, U., Torres, D., Gerla, M.: DOTS: a propagation delay-aware opportunistic MAC protocol for underwater sensor networks. In Proceedings of the IEEE International Conference on Network Protocols (ICNP), Kyoto, Japan, pp. 183–192 (2010)Google Scholar
  55. 55.
    Rodoplu, V., Park, M.K.: An energy-efficient MAC protocol for underwater wireless acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Washington, DC, USA (2005)Google Scholar
  56. 56.
    Zheng, L., Cai, L.: Flipped diversity aloha in wireless networks with long and varying delay. In: Proceedings of the IEEE Global Tele. Conferences (GLOBOCOM), Houston, TX, USA, pp. 1–5 (2011)Google Scholar
  57. 57.
    Zhu, Y.B., Peng, Z., Cui, J.H., Chen, H.: Toward practical MAC design for underwater acoustic networks. IEEE Trans. Mob. Comput. 14(4), 872–886 (2015)CrossRefGoogle Scholar
  58. 58.
    Bandyopadhyay, S., Coyle, E.J.: An energy efficient hierarchical clustering algorithm for wireless sensor networks. In: Proceedings of the IEEE INFOCOM, San Francisco, USA, pp. 1713–1723 (2003)Google Scholar
  59. 59.
    Chirdchoo, N., Soh, W.-S., Chua, K.C.: RIPT: a receiver-initiated reservation-based protocol for underwater acoustic networks. IEEE J. Sel. Areas Commun. 26(9), 1744–1753 (2008)CrossRefGoogle Scholar
  60. 60.
    Syed, A.A., Ye, W., Heidemann, J.: Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks. IEEE J. Sel. Areas Commun. 26(9), 1731–1743 (2008)CrossRefGoogle Scholar
  61. 61.
    Hsu, C.-C., Kuo, M.S., Chou, C.F., Lin, K.C.: The elimination of spatial-temporal uncertainty in underwater sensor networks. ACM/IEEE Trans. Netw. 21(4), 1229–1242 (2013)CrossRefGoogle Scholar
  62. 62.
    Noh, Y., Lee, U., Han, S.V., Wang, P., Torres, D., Kim, J., Gerla, M.: DOTS: a propagation delay-aware opportunistic MAC protocol for mobile underwater networks. IEEE Trans. Mob. Comput. 13(4), 766–782 (2014)CrossRefGoogle Scholar
  63. 63.
    Fullmer, C.L., Garcia-Luna-Aceves, J.J.: Solutions to hidden terminal problems in wireless networks. In: Proceedings of the ACM SIGCOMM, Cannes, France (1997)CrossRefGoogle Scholar
  64. 64.
    Rodoplu, V., Park, M.K.: UWAN-MAC: an energy-efficient MAC protocol for underwater acoustic wireless sensor networks. IEEE J. Ocean. Eng. 32(2), 710–720 (2007)Google Scholar
  65. 65.
    Casari, P., Lapiccirella, F.E., Zorzi, M.: A detailed simulation study of the UWAN-MAC protocol for underwater acoustic networks. In: Proceedings of the MTS/IEEE OCEANS, Aberdeen, UK (2007)Google Scholar
  66. 66.
    Gollakota, S., Katabi, D.: Zigzag decoding: combating hidden terminals in wireless networks. In: Proceedings of the ACM SIGCOMM, New York, NY, USA, pp. 159–170 (2008)CrossRefGoogle Scholar
  67. 67.
    Kilfoyle, D.B., Preisig, J.C., Baggeroer, A.B.: Spatial modulation experiments in underwater acoustic channel. IEEE J. Ocean. Eng. 30(2), 406–415 (2005)CrossRefGoogle Scholar
  68. 68.
    Li, Z., Guo, Z., Qu, H., Hong, F., Chen, P., Yang, M.: UD-TDMA: a distributed TDMA protocol for underwater acoustic sensor networks. In: Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), Macau, China, pp. 918–923 (2009)Google Scholar
  69. 69.
    Yu, Y., Giannakis, G.B.: High-throughput random access using successive interference cancellation in a tree algorithm. IEEE Trans. Inform. Theory 53(12), 4628–4639 (2007)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Zheng, L., Cai, L.: AFDA: asynchronous flipped diversity ALOHA for emerging wireless networks with long and heterogeneous delay. IEEE Trans. Emerg. Top. Comput. 3(1), 64–73 (2015)CrossRefGoogle Scholar
  71. 71.
    Jiang, S.M.: A logical MIMO MAC approach for uplink access control in centralized wireless. In: Proceedings of the IEEE International Conferences on Communication Systems (ICCS), Guangzhou, China (2008)Google Scholar
  72. 72.
    Jiang, S.M.: Future Wireless and Optical Networks: Networking Modes and Cross-Layer Design. Springer, London (2012)CrossRefGoogle Scholar
  73. 73.
    Li, B., Zhou, S., Freitag, L., Stojanovic, M., Willett, P.: Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts. IEEE J. Ocean. Eng. 33(2), 198–209 (2008)CrossRefGoogle Scholar
  74. 74.
    Sklar, B.: Digital Communications: Fundamentals and Applications 2nd edn. Prentice-Hall (2002). ISBN 7-5053-7870-8Google Scholar
  75. 75.
    Diamant, R., Shirazi, G., Lampe, L.: Robust spatial reuse scheduling in underwater acoustic communication networks. In: Proceedings of the. IEEE Vehicular Technology Conference (VTC) - Fall, San Francisco, CA, pp. 1–5 (2011)Google Scholar
  76. 76.
    Kredo, K., II, Djukic, P., Mohapatra, P.: STUMP: exploiting position diversity in the staggered TDMA underwater MAC protocol. In: Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brasil (2009)Google Scholar
  77. 77.
    Martin, R., Zhu, Y.B., Pu, L., Dou, F., Peng, Z., Cui, J.H., Rajasekaran, S.: Aqua-sim next generation: a NS-3 based simulator for underwater sensor networks. In: Proceedings of the ACM International Conferences on Underwater Networks and Systems (WUWNet), Arlington, VA, USA (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Marine Internet Laboratory (MILAB), College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations