Abstract
Nanosensors have been proven to be a powerful tool in sensing various targeting analytes such as proteins, DNA, and RNA and small molecules such as toxins, drugs, metabolites, biomarkers, and environmental pollutants with high specificity and selectivity. Among various environmental pollutants, pollution by contamination of heavy metal is one of the most serious issues in current global scenario because of its potential toxicity toward human and aquatic life. Conventional methods of detecting such toxic ions include inductively coupled plasma mass spectroscopy (ICP-MS) and atomic absorption spectroscopy (AAS). These methods are accurate in minute-level detection, but still possess some drawbacks such as high time consumption, involvement of toxic chemicals, and requirement of sophisticated laboratory setup. Therefore, there is a need for inexpensive, user-friendly, quick, and portable methods for detection of these toxic ions. Efforts are being made in developing gold nanosensors for easy monitoring of heavy metal toxins in environmental samples. Due to unique optical, electrical, and mechanical properties, gold nanoparticles render improved performance as sensor probe for better sensitivity, selectivity, portability, and multi-load detection capability. During sensing process, the nanoparticles aggregate in the presence of specific metal ions and show visible color change from red to blue to colorless. The qualitative color change detected using naked eyes shows the presence of targeted heavy metal ions. Apart from the qualitative analysis, the quantitative estimation can be achieved with the help of gold nanoparticles by various techniques such as CCD or CMOS sensors, photodetectors, and color light sensors. This chapter deals with various synthesis processes, potential colorimetric-based sensing applications of gold-based nanosensor, and associated electronic circuitry, which could be employed for detection and quantification of various heavy metal toxins.
Keywords
- Gold nanosensors
- Photophysical properties
- Chemical pollutants
- Heavy metal ions
- Detection and estimation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Al-Sid-Cheikh M, Pédrot M, Dia A, Guenet H, Vantelon D, Davranche M, Gruau G, Delhaye T (2015) Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences. Sci Total Environ 515:118–128. https://doi.org/10.1016/j.scitotenv.2015.02.047
Am J, Zhiwei Z, Kang Kug L, Chong HA, Paul LB (2011) State-of-the-art lab chip sensors for environmental water monitoring. Meas Sci Technol 22(3):032001
Amendola V, Pilot R, Frasconi M, Marago OM, Iati MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter 29(20):203002. https://doi.org/10.1088/1361-648X/aa60f3
Aziz MA, Kim J-P, Shaikh MN, Oyama M, Bakare FO, Yamani ZH (2015) Size-controlled preparation of fluorescent gold nanoparticles using pamoic acid. Gold Bull 48(1):85–92. https://doi.org/10.1007/s13404-015-0164-2
Benkovičová M, Végsö K, Šiffalovič P, Jergel M, Majková E, Luby Š, Šatka A (2013) Preparation of sterically stabilized gold nanoparticles for plasmonic applications. Chem Papers 67. https://doi.org/10.2478/s11696-013-0315-y
Bourg M-C, Badia A, Lennox RB (2000) Gold–sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J Phys Chem B 104(28):6562–6567. https://doi.org/10.1021/jp9935337
Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12(3):323–328. https://doi.org/10.1016/j.chembiol.2005.01.013
Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2 + using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2(5):1466–1470
Chen W, Tu X, Guo X (2009) Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem Commun 13:1736–1738. https://doi.org/10.1039/B820145E
Chen W-Y, Chen L-Y, Ou C-M, Huang C-C, Wei S-C, Chang H-T (2013) Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor. Anal Chem 85(18):8834–8840. https://doi.org/10.1021/ac402043t
Chen Z, Zhang C, Tan Y, Zhou T, Ma H, Wan C, Lin Y, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182(3):611–616. https://doi.org/10.1007/s00604-014-1365-8
Cheng W, Wang E (2004) Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic interaction. J Phys Chem B 108(1):24–26. https://doi.org/10.1021/jp036522t
Cho SH, Qiao W, Tsai FS, Yamashita K, Lo Y-H (2010) Lab-on-a-chip flow cytometer employing color-space-time coding. Appl Phys Lett 97(9):093704. https://doi.org/10.1063/1.3481695
Choi J, Park S, Stojanović Z, Han H-S, Lee J, Seok HK, Uskoković D, Lee KH (2013) Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters. Langmuir 29(50):15698–15703. https://doi.org/10.1021/la403888f
Chowdury M, Walji N, Mahmud M, MacDonald B (2017) Paper-based microfluidic device with a gold nanosensor to detect arsenic contamination of groundwater in Bangladesh. Micromachines 8(3):71
Comeau KD, Meli MV (2012) Effect of alkanethiol chain length on gold nanoparticle monolayers at the air-water interface. Langmuir 28(1):377–381. https://doi.org/10.1021/la202895n
Cunningham SK, Keaveny TV (1978) A two-stage enzymatic method for determination of uric acid and hypoxanthine/xanthine. Clin Chim Acta 86(2):217–221
Das J, Sarkar P, Panda J, Pal P (2014) Low-cost field test kits for arsenic detection in water. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 49(1):108–115. https://doi.org/10.1080/10934529.2013.824764
Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50(91):14194–14196. https://doi.org/10.1039/C4CC05946H
Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88(3):855s–858s
Ding J, Lu Z, Wang R, Shen G, Xiao L (2014) Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for 2,4-dichlorophenoxyacetic acid quantification. Sens Actuators B: Chem 193:568–573. https://doi.org/10.1016/j.snb.2013.11.079
Dominguez-Gonzalez R, Gonzalez Varela L, Bermejo-Barrera P (2014) Functionalized gold nanoparticles for the detection of arsenic in water. Talanta 118:262–269. https://doi.org/10.1016/j.talanta.2013.10.029
Douglas-Gallardo OA, Berdakin M, Sánchez CG (2016) Atomistic insights into chemical interface damping of surface plasmon excitations in silver nanoclusters. J Phys Chem C 120(42):24389–24399. https://doi.org/10.1021/acs.jpcc.6b08519
Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136(5):933–940. https://doi.org/10.1039/C0AN00424C
Elavarasi M, Rajeshwari A, Chandrasekaran N, Mukherjee A (2013) Simple colorimetric detection of Cr(iii) in aqueous solutions by as synthesized citrate capped gold nanoparticles and development of a paper based assay. Anal Methods 5(21):6211–6218. https://doi.org/10.1039/C3AY41435C
El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H (2008) Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. Eur Phys J Spec Topics 153(1):361–364. https://doi.org/10.1140/epjst/e2008-00462-0
Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J Am Ceram Soc 83(10):2385–2393. https://doi.org/10.1111/j.1151-2916.2000.tb01566.x
Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217. https://doi.org/10.1039/B514191E
Fang C, Chungang W, Tingting W, Zhanfang M, Zhongmin S (2010) L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 21(2):025501
Fang X, Zhao Q, Cao H, Liu J, Guan M, Kong J (2015) Rapid detection of Cu2+ by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters. Analyst 140(22):7823–7826. https://doi.org/10.1039/C5AN01016K
Fu X-C, Chen X, Guo Z, Kong L-T, Wang J, Liu J-H, Huang X-J (2010) Three-dimensional gold micro-/nanopore arrays containing 2-mercaptobenzothiazole molecular adapters allow sensitive and selective stripping voltammetric determination of trace mercury (II). Electrochim Acta 56(1):463–469. https://doi.org/10.1016/j.electacta.2010.09.025
Gao J, Huang X, Liu H, Zan F, Ren J (2012) Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 28(9):4464–4471. https://doi.org/10.1021/la204289k
Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862. https://doi.org/10.1021/cr0680282
Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315. https://doi.org/10.1016/j.addr.2008.03.016
Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K (2017) Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. 7:40298. https://doi.org/10.1038/srep40298
He YQ, Liu SP, Kong L, Liu ZF (2005) A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta Part A Mol Biomol Spectrosc 61(13):2861–2866. https://doi.org/10.1016/j.saa.2004.10.035
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018
Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7):262–271. https://doi.org/10.1016/j.mattod.2013.07.004
Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. https://doi.org/10.1021/cr068107d
Hong Y-S, Song K-H, Chung J-Y (2014) Health effects of chronic arsenic exposure. J Prevent Med Public Health 47(5):245–252. https://doi.org/10.3961/jpmph.14.035
Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1094. https://doi.org/10.1039/B517615H
Huang C-C, Chang H-T (2007) Parameters for selective colorimetric sensing of mercury(ii) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 12:1215–1217. https://doi.org/10.1039/B615383F
Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28. https://doi.org/10.1016/j.jare.2010.02.002
Huang C-C, Yang Z, Lee K-H, Chang H-T (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46(36):6824–6828. https://doi.org/10.1002/anie.200700803
Hung Y-L, Hsiung T-M, Chen Y-Y, Huang Y-F, Huang C-C (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114(39):16329–16334. https://doi.org/10.1021/jp1061573
Huo Q, Worden JG (2007) Monofunctional gold nanoparticles: synthesis and applications. J Nanopart Res 9(6):1013–1025. https://doi.org/10.1007/s11051-006-9170-x
Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706. https://doi.org/10.1002/adma.200400271
Iatridi Z, Bokias G (2009) Temperature-sensitive water-soluble hybrid organic/inorganic nanoparticles formed through complexation of Cu2+ ions with poly(sodium acrylate)-g-poly(N-isopropylacrylamide) comb-type copolymers in aqueous solution. Langmuir 25(13):7695–7703. https://doi.org/10.1021/la900390y
Jongjinakool S, Palasak K, Bousod N, Teepoo S (2014) Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia 56:10–18. https://doi.org/10.1016/j.egypro.2014.07.126
Kalluri JR, Arbneshi T, Afrin Khan S, Neely A, Candice P, Varisli B, Washington M, McAfee S, Robinson B, Banerjee S, Singh AK, Senapati D, Ray PC (2009) Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angewandte Chemie Int Ed 48(51):9668–9671. https://doi.org/10.1002/anie.200903958
Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. https://doi.org/10.1021/jp026731y
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707. https://doi.org/10.1021/jp061667w
Kumar SV, Ganesan S (2011) Preparation and characterization of gold nanoparticles with different capping agents. Int J Green Nanotechnol 3(1):47–55. https://doi.org/10.1080/19430892.2011.574538
Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N (2015) A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 140(6):1817–1821
Kumar S, Bhushan P, Bhattacharya S (2016) Development of a paper-based analytical device for colorimetric detection of uric acid using gold nanoparticles–graphene oxide (AuNPs–GO) conjugates. Anal Methods 8(38):6965–6973. https://doi.org/10.1039/c6ay01926a
Kutzing MK, Firestein BL (2008) Altered uric acid levels and disease states. J Pharmacol Exp Ther 324(1):1–7. https://doi.org/10.1124/jpet.107.129031
Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46(22):4093–4096. https://doi.org/10.1002/anie.200700269
Lee SY, Krishnamurthy S, Cho C-W, Yun Y-S (2016) Biosynthesis of gold nanoparticles using ocimum sanctum extracts by solvents with different polarity. ACS Sustain Chem Eng 4(5):2651–2659. https://doi.org/10.1021/acssuschemeng.6b00161
Leng W, Pati P, Vikesland PJ (2015) Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assesment. Environ Sci Nano 2(5):440–453. https://doi.org/10.1039/C5EN00026B
Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell DA, Kornberg RD (2011) Synthesis and characterization of Au102(p-MBA)44 Nanoparticles. J Am Chem Soc 133(9):2976–2982. https://doi.org/10.1021/ja109131w
Li M, Shi L, Xie T, Jing C, Xiu G, Long Y-T (2017) An ultrasensitive plasmonic nanosensor for aldehydes. ACS Sens 2(2):263–267. https://doi.org/10.1021/acssensors.6b00769
Liang M, Lin IC, Whittaker MR, Minchin RF, Monteiro MJ, Toth I (2010) Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano 4(1):403–413. https://doi.org/10.1021/nn9011237
Liebig F, Sarhan RM, Prietzel C, Reinecke A, Koetz J (2016) “Green” gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering. RSC Adv 6(40):33561–33568. https://doi.org/10.1039/C6RA04808K
Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217. https://doi.org/10.1021/jp984796o
Liu J, Lu Y (2004a) Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305. https://doi.org/10.1021/ja046628h
Liu J, Lu Y (2004b) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14(4):343–354
Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide–poly(ethylene glycol) monolayers. Anal Chem 79(6):2221–2229. https://doi.org/10.1021/ac061578f
Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3(4):1421–1433. https://doi.org/10.1039/C0NR00887G
Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695. https://doi.org/10.1021/ac4001157
Lu J, Xiong Y, Liao C, Ye F (2015) Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). Anal Methods 7(23):9894–9899. https://doi.org/10.1039/C5AY02240A
Manson J, Kumar D, Meenan BJ, Dixon D (2011) Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 44(2):99–105. https://doi.org/10.1007/s13404-011-0015-8
McQuaid HN, Muir MF, Taggart LE, McMahon SJ, Coulter JA, Hyland WB, Jain S, Butterworth KT, Schettino G, Prise KM, Hirst DG, Botchway SW, Currell FJ (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. 6:19442. https://doi.org/10.1038/srep19442. http://dharmasastra.live.cf.private.springer.com/articles/srep19442#supplementary-information
Michaelides EE (2015) Brownian movement and thermophoresis of nanoparticles in liquids. Int J Heat Mass Transf 81:179–187. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.019
Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289. https://doi.org/10.4103/0975-7406.72127
Moon S, Tanaka S, Sekino T (2010) Crystal growth of thiol-stabilized gold nanoparticles by heat-induced coalescence. Nanoscale Res Lett 5(5):813–817. https://doi.org/10.1007/s11671-010-9565-6
Moreira FR, Moreira JC (2004) Effects of lead exposure on the human body and health implications. Rev Panam Salud Publica 15(2):119–129
Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645. https://doi.org/10.1021/ja902062j
Nam J, Kim Y-T, Kang A, Kim K-H, Lee K, Yun WS, Kim YH (2016) Lipid reconstitution-enabled formation of gold nanoparticle clusters for mimetic cellular membrane. J Nanomaterials 2016:7. https://doi.org/10.1155/2016/2860859
Nath P, Arun RK, Chanda N (2014) A paper based microfluidic device for the detection of arsenic using a gold nanosensor. RSC Adv 4(103):59558–59561. https://doi.org/10.1039/C4RA12946F
Nath P, Arun RK, Chanda N (2015) Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv 5(84):69024–69031. https://doi.org/10.1039/C5RA14886C
Neupane MP, Lee SJ, Park IS, Lee MH, Bae TS, Kuboki Y, Uo M, Watari F (2011) Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration. J Nanopart Res 13(2):491–498. https://doi.org/10.1007/s11051-010-9971-9
Nguyen Ngoc L, Le Van V, Chu Dinh K, Sai Cong D, Cao Thi N, Pham Thi H, Nguyen Duy T, Luu Manh Q (2009) Synthesis and optical properties of colloidal gold nanoparticles. J Phys Conf Ser 187(1):012026
Perala SRK, Kumar S (2013) On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method. Langmuir 29(31):9863–9873. https://doi.org/10.1021/la401604q
Philip D (2008) Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 71(1):80–85. https://doi.org/10.1016/j.saa.2007.11.012
Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles—a new perspective. CrystEngComm 17(36):6809–6830. https://doi.org/10.1039/C5CE01014D
Popelka Š, Lk Machová, Rypáček F (2007) Adsorption of poly(ethylene oxide)–block–polylactide copolymers on polylactide as studied by ATR-FTIR spectroscopy. J Colloid Interface Sci 308(2):291–299. https://doi.org/10.1016/j.jcis.2006.12.022
Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens Actuators B Chem 238:888–902. https://doi.org/10.1016/j.snb.2016.06.081
Qu X, Li Y, Li L, Wang Y, Liang J, Liang J (2015) Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomaterials 2015:23. https://doi.org/10.1155/2015/784097
Ramos M, Ferrer DA, Chianelli RR, Correa V, Serrano-Matos J, Flores S (2011) Synthesis of Ag-Au nanoparticles by galvanic replacement and their morphological studies by HRTEM and computational modeling. J Nanomaterials 2011:5. https://doi.org/10.1155/2011/374096
Rance GA, Marsh DH, Bourne SJ, Reade TJ, Khlobystov AN (2010) van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano 4(8):4920–4928. https://doi.org/10.1021/nn101287u
Ratnarathorn N, Chailapakul O, Dungchai W (2015) Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Talanta 132:613–618. https://doi.org/10.1016/j.talanta.2014.10.024
Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. https://doi.org/10.1021/cr2001178
Sakamoto H, Hatsuda R, Miyamura K, Shiraishi H, Sugiyama S (2011) Electrochemical selective detection of uric acid using a copper-modified carbon electrode. Anal Sci Int J Japan Soc Anal Chem 27(3):333–335
Shams N, Lim HN, Hajian R, Yusof NA, Abdullah J, Sulaiman Y, Ibrahim I, Huang NM (2016) Electrochemical sensor based on gold nanoparticles/ethylenediamine-reduced graphene oxide for trace determination of fenitrothion in water. RSC Adv 6(92):89430–89439. https://doi.org/10.1039/C6RA13384C
Shen L, Ratterman M, Klotzkin D, Papautsky I (2011) A CMOS optical detection system for point-of-use luminescent oxygen sensing. Sens Actuators B Chem 155(1):430–435. https://doi.org/10.1016/j.snb.2011.01.001
Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12(21):4240–4243. https://doi.org/10.1039/C2LC40741H
Shervani Z, Yamamoto Y (2011) Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohyd Res 346(5):651–658. https://doi.org/10.1016/j.carres.2011.01.020
Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10:147. https://doi.org/10.1186/s11671-015-0856-9
Siigur J, Siigur E (2000) Polypeptides and proteins active in the coagulation process. In: Rochat H, Martin-Eauclaire M-F (eds) Animal toxins: facts and protocols. Birkhäuser Basel, Basel, pp 319–346. https://doi.org/10.1007/978-3-0348-8466-2_20
Singh P, Nath P, Arun RK, Mandal S, Chanda N (2016) Novel synthesis of a mixed Cu/CuO-reduced graphene oxide nanocomposite with enhanced peroxidase-like catalytic activity for easy detection of glutathione in solution and using a paper strip. RSC Adv 6(95):92729–92738. https://doi.org/10.1039/C6RA20882G
Spampinato V, Parracino MA, La Spina R, Rossi F, Ceccone G (2016) surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications. Front Chem 4(8). https://doi.org/10.3389/fchem.2016.00008
Su D, Yang X, Xia Q, Chai F, Wang C, Qu F (2013) Colorimetric detection of Hg2+ using thioctic acid functionalized gold nanoparticles. RSC Adv 3(46):24618–24624. https://doi.org/10.1039/C3RA43276A
Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6(3–4):335
Sumi T, Motono S, Ishida Y, Shirahata N, Yonezawa T (2015) Formation and optical properties of fluorescent gold nanoparticles obtained by matrix sputtering method with volatile mercaptan molecules in the vacuum chamber and consideration of their structures. Langmuir 31(14):4323–4329. https://doi.org/10.1021/acs.langmuir.5b00294
Tan YN, Lee KH, Su X (2011) Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Anal Chem 83(11):4251–4257. https://doi.org/10.1021/ac200525a
Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nano Today 1(1):28–37. https://doi.org/10.1016/S1748-0132(06)70020-2
Thi Ha Lien N, Thi Huyen L, Xuan Hoa V, Viet Ha C, Thanh Hai N, Quang Huan L, Emmanuel F, Quang Hoa D, Hong Nhung T (2010) Synthesis, capping and binding of colloidal gold nanoparticles to proteins. Adv Nat Sci Nanosci Nanotechnol 1(2):025009
Uehara N (2010) Polymer-functionalized gold nanoparticles as versatile sensing materials. Anal Sci 26(12):1219–1228. https://doi.org/10.2116/analsci.26.1219
van Hengel IAJ, Riool M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, Zaat SAJ, Apachitei I (2017) Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials 140:1–15. https://doi.org/10.1016/j.biomaterials.2017.02.030
Vijitvarasan P, Oaew S, Surareungchai W (2015) Paper-based scanometric assay for lead ion detection using DNAzyme. Anal Chim Acta 896:152–159. https://doi.org/10.1016/j.aca.2015.09.011
Wang X (2015) Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles. Colloids Surf A hysicochemical Eng Aspects 472:57–62. https://doi.org/10.1016/j.colsurfa.2015.02.033
Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4(10):2047–2050
Wang Y, Yang F, Yang X (2010) Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Nanotechnology 21(20):205502. https://doi.org/10.1088/0957-4484/21/20/205502
Wang Y, Li X, Zhou Y, Liu C (2012) Colorimetric detection of copper (II) based on the self-assembly of Schiff’s base-functionalized gold nanoparticles. 4(4). https://doi.org/10.5539/ijc.v4n4p90
Wang Y, Wan W, Qiu S, Luo L, Li Y, Guo L, Lin Z, Chen G (2017) Colorimetric probe for copper(ii) ion detection based on cost-effective aminoquinoline derivative. Anal Methods 9(11):1727–1731. https://doi.org/10.1039/C6AY03428D
Wu ZH, Sun S (2016) A review on colorimetric detection of mercury in water using gold nanoparticles. IAEJ 25(2):75–83
Wu Y, Liu L, Zhan S, Wang F, Zhou P (2012) Ultrasensitive aptamer biosensor for arsenic(iii) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 137(18):4171–4178. https://doi.org/10.1039/C2AN35711A
Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135(14):5254–5257. https://doi.org/10.1021/ja400150v
Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889. https://doi.org/10.1021/ja806804u
Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and l-Cysteine. Analyst 136(18):3725–3730. https://doi.org/10.1039/C1AN15238F
Yan L, Zhang S, Chen P, Liu H, Yin H, Li H (2012) Magnetotactic bacteria, magnetosomes and their application. Microbiol Res 167(9):507–519. https://doi.org/10.1016/j.micres.2012.04.002
Yan Z, Yuen M-F, Hu L, Sun P, Lee C-S (2014) Advances for the colorimetric detection of Hg2+ in aqueous solution. RSC Adv 4(89):48373–48388. https://doi.org/10.1039/C4RA07930B
Yang W, Gooding JJ, He Z, Li Q, Chen G (2007) Fast colorimetric detection of copper ions using l-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol 7(2):712–716
Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS (2017) Paper-based microfluidic devices: emerging themes and applications. Anal Chem 89(1):71–91. https://doi.org/10.1021/acs.analchem.6b04581
Ye Y, Lv M, Zhang X, Zhang Y (2015) Colorimetric determination of copper(ii) ions using gold nanoparticles as a probe. RSC Advances 5 (124):102311–102317
Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880. https://doi.org/10.1039/c1nr11188d
Yen C-W, de Puig H, Tam JO, Gómez-Márquez J, Bosch I, Hamad-Schifferli K, Gehrke L (2015) Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 15(7):1638–1641
Yu M (2014) Colorimetric detection of trace arsenic(III) in aqueous solution using arsenic aptamer and gold nanoparticles. Aust J Chem 67(5):813–818. https://doi.org/10.1071/CH13512
Yuan X, Chapman RL, Wu Z (2011) Analytical methods for heavy metals in herbal medicines. Phytochem Anal 22(3):189–198. https://doi.org/10.1002/pca.1287
Yuan Z, Hu C-C, Chang H-T, Lu C (2016) Gold nanoparticles as sensitive optical probes. Analyst 141(5):1611–1626. https://doi.org/10.1039/C5AN02651B
Zeng J, Ma Y, Jeong U, Xia Y (2010) AuI: an alternative and potentially better precursor than AuIII for the synthesis of Au nanostructures. J Mater Chem 20(12):2290–2301. https://doi.org/10.1039/B922571D
Zhao L, Gu W, Zhang C, Shi X, Xian Y (2016) In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. J Colloid Interface Sci 465:279–285
Zhu T, Vasilev K, Kreiter M, Mittler S, Knoll W (2003) Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 19(22):9518–9525. https://doi.org/10.1021/la035157u
Acknowledgements
The authors thank Dr. Harish Hirani, Director, and Dr. Nagahanumaiah, Head, Micro System Technology Laboratory, CSIR-CMERI, Durgapur, for their encouragement. Support from DBT and CSIR grants under project no. GAP-101612 and ESC0112, respectively, is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Nath, P., Priyadarshni, N., Mandal, S., Singh, P., Arun, R.K., Chanda, N. (2018). Gold Nanostructure in Sensor Technology: Detection and Estimation of Chemical Pollutants. In: Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A. (eds) Environmental, Chemical and Medical Sensors. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7751-7_3
Download citation
DOI: https://doi.org/10.1007/978-981-10-7751-7_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7750-0
Online ISBN: 978-981-10-7751-7
eBook Packages: EngineeringEngineering (R0)