The Origin of the Solar Wind

Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)

Abstract

The source regions of the solar wind, and its driver and acceleration mechanism, remain key topics of study in heliophysics. With its combination of high sensitivity and high spatial resolution measurements of Doppler flows, mass motions, and plasma composition, the Hinode satellite is uniquely equipped to investigate many of these issues. On the occasion of the tenth anniversary of the launch of Hinode, we here briefly review some of the scientific highlights on this subject from the mission over the last decade.

Keywords

Solar wind EUV spectroscopy Abundances 

Notes

Acknowledgements

Figure 1 taken from Figure 6 in Teriaca et al. (2012). Figure 2 adapted from the original Figures 1 & 3 in Lee et al. (2015). Figure 3 adapted from the original Figures 6 and 8 in Brooks et al. (2015). Courtesy of Nature under Creative Commons Attribution 4.0 International license.

References

  1. Brooks, D.H., Warren, H.P.: Establishing a connection between active region outflows and the solar wind: abundance measurements with EIS/Hinode. Astrophys. J. Lett. 727, L13–L17 (2011)ADSCrossRefGoogle Scholar
  2. Brooks, D.H., Warren, H.P.: The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows. Astrophys. J. Lett. 760, L5–L10 (2012)ADSCrossRefGoogle Scholar
  3. Brooks, D.H., et al.: Full-sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947 (2015). https://doi.org/10.1038/ncomms6947 CrossRefGoogle Scholar
  4. Bryans, P., et al.: Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012–1020 (2010)ADSCrossRefGoogle Scholar
  5. Cirtain, J.W., et al.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007). https://doi.org/10.1126/science.1147050 ADSCrossRefGoogle Scholar
  6. Culhane, J.L., et al.: Tracking solar active region outflow plasma from its source to the near-Earth environment. Sol. Phys. 289, 3799–3816 (2014)ADSCrossRefGoogle Scholar
  7. Del Zanna, G.: Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, L49–L52 (2008)ADSCrossRefGoogle Scholar
  8. Del Zanna, G., et al.: A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, 137–148 (2011)CrossRefGoogle Scholar
  9. Doschek, G., et al.: Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362–1371 (2008)ADSCrossRefGoogle Scholar
  10. Edwards, S.J., et al.: A comparison of global magnetic field skeletons and active-region upflows. Sol. Phys. 291, 117–142 (2016)ADSCrossRefGoogle Scholar
  11. Feldman, U., Widing, K.G.: Elemental abundances in the solar upper atmosphere derived by spectroscopic means. Space Sci. Rev. 107, 665–720 (2003)ADSCrossRefGoogle Scholar
  12. Feldman, U., et al.: On the sources of fast and slow solar wind. J. Geophys. Res. 110, A07109 (2005). https://doi.org/10.1029/2004JA010918 ADSGoogle Scholar
  13. Geiss, G., et al.: Origin of the solar wind from composition data. Space Sci. Rev. 72, 49–60, (1995)ADSCrossRefGoogle Scholar
  14. Guennou, C., et al.: Relative abundance measurements in plumes and interplumes. Astrophys. J. 807, 145–158 (2015)ADSCrossRefGoogle Scholar
  15. Hara, H., et al.: Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Lett. 678, L67–L71 (2008)ADSCrossRefGoogle Scholar
  16. Harra, L.K., et al.: Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147–L150 (2008)ADSCrossRefGoogle Scholar
  17. Imada, S., et al.: Magnetic reconnection in non-equilibrium ionization plasma. Astrophys. J. 742, 70–80 (2011a)ADSCrossRefGoogle Scholar
  18. Imada, S., et al.: One-dimensional modeling for temperature-dependent upflow in the dimming region observed by Hinode/EUV imaging spectrometer. Astrophys. J. 743, 57–67 (2011b)ADSCrossRefGoogle Scholar
  19. Lee, K.-S., et al.: Photospheric abundances of polar jets on the Sun observed by Hinode. Astrophys. J. 809, 114–122 (2015)ADSCrossRefGoogle Scholar
  20. Mandrini, C., et al.: Topological analysis of emerging bipole clusters producing violent solar events. Sol. Phys. 289, 2041–2071 (2014)ADSCrossRefGoogle Scholar
  21. Mariska, J.T., et al.: Solar transition region response to variations in the heating rate. Astrophys. J. 255, 783–796 (1982)ADSCrossRefGoogle Scholar
  22. Muller, D., et al.: Solar orbiter. Exploring the Sun-heliosphere connection. Sol. Phys. 285, 25–70 (2013)Google Scholar
  23. Ofman, L., Davila, J.M.: Solar wind acceleration by large-amplitude nonlinear waves: parametric study. J. Geophys. Res. 103, 23677 (1998). https://doi.org/10.1029/98JA01996 ADSCrossRefGoogle Scholar
  24. Ofman, L., Davila, J.M.: Three-fluid 2.5-dimensional magnetohydrodynamic model of the effective temperature in coronal holes. Astrophys. J. 553, 935–940 (2001)Google Scholar
  25. Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)ADSCrossRefGoogle Scholar
  26. Sakao, T., et al.: Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585 (2007). https://doi.org/10.1126/science.1147292 ADSCrossRefGoogle Scholar
  27. Shibata, K., et al.: Observations of X-ray jets with the YOHKOH soft X-ray telescope. Pub. Astron. Soc. Jpn. 44, L173–L179 (1992)ADSGoogle Scholar
  28. Sterling, A.C., et al.: Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437–440 (2015). https://doi.org/10.1038/nature14556 ADSCrossRefGoogle Scholar
  29. Suzuki, T.K., Inutsuka, S.-I.: Making the corona and the fast solar wind: a self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, L49–L52 (2005)Google Scholar
  30. Teriaca, L., et al.: LEMUR: large European module for solar ultraviolet research. European contribution to JAXA’s solar-C mission. Exp. Astron. 34, 273–309 (2012)Google Scholar
  31. von Steiger, R., et al.: Composition of quasi-stationary solar wind flows from Ulyssessolar wind ion composition spectrometer. J. Geophys. Res. 105, 27217 (2000). https://doi.org/10.1029/1999JA000358 ADSCrossRefGoogle Scholar
  32. Widing, K.G., Feldman, U.: On the rate of abundance modifications versus time in active region plasmas. Astrophys. J. 555, 426–434 (2001)ADSCrossRefGoogle Scholar
  33. Wilhelm, K., Bodmer, R.: Solar EUV and UV emission line observations above a polar coronal hole. Space Sci. Rev. 85, 371–378 (1998)ADSCrossRefGoogle Scholar
  34. Young, P.R., et al.: Temperature and density in a polar plume – measurements from CDS/SOHO. Astron. Astrophys. 350, 286–301 (1999)ADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kyoung-Sun Lee
    • 1
  • David H. Brooks
    • 2
  • Shinsuke Imada
    • 3
  1. 1.National Astronomical Observatory of JapanMitaka, TokyoJapan
  2. 2.College of ScienceGeorge Mason UniversityFairfaxUSA
  3. 3.Institute for Space-Earth Environmental Research (ISEE)Nagoya UniversityNagoya, AichiJapan

Personalised recommendations