Solar Extreme Ultraviolet Spectroscopy: zur NachEISzeit

  • Tetsuya Watanabe
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)


The extreme ultraviolet (EUV) imaging spectrometer (EIS) onboard the Hinode mission has been observing for more than a decade since its launch the profiles of EUV emission lines originating from high-temperature solar outer atmospheres with its high dispersion spectrograms for the first time in solar EUV spectroscopy. The EIS has been ice-breaking difficult problems and obtaining a plenty of important scientific results. The EIS has since entered an epoch of “sunrise” in solar EUV spectroscopy. Scientific outputs thawed out by EIS are briefly discussed, and key emission lines in hot and dynamic postglacial periods of solar EUV spectroscopy are highlighted.


Sun: UV radiation Sun: transition region Sun: corona 


  1. Antolin, P., et al.: Predicting observational signatures of coronal heating by Alfvén waves and nanoflares. Astrophys. J. 688, 669–682 (2008)ADSCrossRefGoogle Scholar
  2. Brooks, D., Ugarte-Urra, I., Warren, H.P.: Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 6947 (2015)CrossRefGoogle Scholar
  3. Brooks, D.H., Warren, H.P.: Measurements of non-thermal line widths in solar active regions. Astrophys. J. 820, 63 (14pp) (2016)Google Scholar
  4. Brooks, D.H., Warren, H.P., Winebarger, A.R.: Characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by Hinode. Astrophys. J. 720, 1380–1394 (2010)Google Scholar
  5. Brown, C.M., et al.: Wavelengths and intensities of spectral lines in the 171–211 and 245–291 Å ranges from five solar regions recorded by the Extreme-ultraviolet imaging spectrometer (EIS) on Hinode. Astrophys. J. Suppl. 176, 511–535 (2008)Google Scholar
  6. Cirtain, J.W., et al.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580–1582 (2007)ADSCrossRefGoogle Scholar
  7. Culhane, J.L. et al.: The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19–61 (2007)ADSCrossRefGoogle Scholar
  8. De Pontieu, B., et al.: Observing the roots of solar coronal heating – in the chromosphere. Astrophys. J. 701, L1–L6 (2009)ADSCrossRefGoogle Scholar
  9. Doschek, G.A., et al.: Nonthermal velocities in solar active regions observed with the Extreme-ultraviolet imaging spectrometer on Hinode. Astrophys. J. 667, L109–L112 (2007)Google Scholar
  10. Erdelyi, R., Taroyan, Y.: Hinode EUV spectroscopic observations of coronal oscillations. Astron. Astrophys. 489, L49–L52 (2008)ADSCrossRefGoogle Scholar
  11. Fisher, G. II., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics – part six – chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425–433 (1985)ADSCrossRefGoogle Scholar
  12. Fu, H., et al.: Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations. Astrophys. J. 794, 109 (9pp) (2014)Google Scholar
  13. Hara, H.: Coronal plasma motions in active region loops observed with Hinode EIS. In: Lites B., Cheung, M., Magara, T., Mariska, J., Reeves, K. (eds.) The Second Hinode Science Meeting Beyond Discovery – Toward Understanding. Astronomical Society Pacific Conference Series, vol. 415, pp. 252–255. ASP, San Francisco (2009)Google Scholar
  14. Harra, L.K., et al.: Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. 676, L147–L150 (2008a)ADSCrossRefGoogle Scholar
  15. Hara, H., et al.: Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. 678, L67–L71 (2008b)ADSCrossRefGoogle Scholar
  16. Hara, H., et al.: Plasma motions and heating by magnetic reconnection in a 2007 May 19 flare. Astrophys. J. 741, 107 (20pp) (2011)Google Scholar
  17. Imada, S., et al.: Evidence for hot fast flow above a solar flare arcade. Astrophys. J. 776, L11 (5pp) (2013)Google Scholar
  18. Kamio, S., et al.: Distribution of jets and magnetic fields in a coronal hole. Astron. Astrophys. 502, 343–345 (2009)ADSCrossRefGoogle Scholar
  19. Kitagawa, N., et al.: Mode identification of MHD waves in an active region observed with Hinode/EIS. Astrophys. J. 721, 744–749 (2010)ADSCrossRefGoogle Scholar
  20. Mariska, J.T., Dowdy, J.F. Jr.: Solar Doppler-shift measurements in the Ne vii 465 Å emission line. Astrophys. J. 401, 754–758 (1992)ADSCrossRefGoogle Scholar
  21. Mariska, J.T., Muglach, K.: Doppler-shift, intensity, and density oscillations observed with the Extreme ultraviolet imaging spectrometer on Hinode. Astrophys. J. 713, 573–583 (2010)Google Scholar
  22. Mariska, J.T., et al.: Observations of Doppler shift oscillations with the EUV imaging spectrometer on Hinode. Astrophys. J. 681, L41–L44 (2008)Google Scholar
  23. Matsui, Y., et al.: Multi-wavelength spectroscopic observation of extreme-ultraviolet jet in AR 10960. Astrophys. J. 759, 15 (8pp) (2012)Google Scholar
  24. Milligan, R., Dennis, B.R.: Velocity characteristics of evaporated plasma using Hinode/EUV imaging spectrometer. Astrophys. J. 699, 968–975 (2009)ADSCrossRefGoogle Scholar
  25. Okamoto, T.J., et al.: Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577–1580 (2007)ADSCrossRefGoogle Scholar
  26. Okamoto, J.T., et al.: Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. Astrophys. J. 809, 71 (12pp) (2015)Google Scholar
  27. Sakao, T., et al.: Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318, 1585–1588 (2007)ADSCrossRefGoogle Scholar
  28. Teriaca, L., et. al.: SUMER observations of Doppler shift in the quiet Sun and in an active region. Astron. Astrophys. 349, 636–648 (1999)Google Scholar
  29. Teriaca, L., Warren, H.P., Curdt W.: Spectroscopic observations of Fe xviii in solar active regions. Astrophys. J. 754, L40 (5pp) (2012)Google Scholar
  30. Tousey, R., et al.: Extreme ultraviolet spectroheliograph ATM experiment S082A. Appl. Opt. 16, 870–878 (1977)ADSCrossRefGoogle Scholar
  31. Tsuneta, S., et al.: The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374–1381 (2008)ADSCrossRefGoogle Scholar
  32. Van Doorsselaere T., et al.: Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS. Astron. Astrophys. 487, L17–L20 (2008)ADSCrossRefGoogle Scholar
  33. Wang, T.J., et al.: Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astron. Astrophys. 503, L25–L28 (2009)ADSCrossRefGoogle Scholar
  34. Wang, T.J., Ofman, L., Davila, J.M.: Propagating slow magnetoacoustic waves in coronal loops observed by Hinode/EIS. Astrophys. J. 696, 1448–1460 (2009)ADSCrossRefGoogle Scholar
  35. Watanabe, T., et al.: Production of high-temperature plasmas during the early phases of a C9.7 flare. Astrophys. J. 719, 213–219 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.National Astronomical Observatory of JapanMitaka-shiJapan

Personalised recommendations