Advertisement

Ten-Year Results of Solar Optical Telescope (SOT) Onboard Hinode

  • Yoshinori Suematsu
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)

Abstract

Since the scientific operation of Hinode started at the end of 2006 October, the Solar Optical Telescope onboard Hinode has provided unprecedentedly high-resolution and high-precision data on the magnetized solar photosphere and chromosphere. I review the achievements enabled by SOT observations in its first decade in terms of the Hinode’s scientific goals, such as understanding the formation and heating mechanism of the outer atmosphere and basic plasma processes such as magnetic reconnection occurring there.

Keywords

Hinode SOT Sun: photosphere Sun: chromosphere Sun: magnetic field 

Notes

Acknowledgements

I am much obliged to all those who actively contributed to the developments and completion of the Hinode SOT and the daily science operation of Hinode. I would like to thank the editors for their useful suggestion to improve the manuscript and Editage (www.editage.jp) for English language editing. Hinode is a Japanese mission developed and launched by ISAS/JAXA, in collaboration with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team consists mainly of scientists from institutes in the partner countries. Support for postlaunch operation is provided by JAXA and NAOJ (Japan), STFC, NASA, ESA, and NSC (Norway).

References

  1. Berger, T., et al.: Magneto-thermal convection in solar prominences. Nature 472, 197–200 (2011).  https://doi.org.10.1038/nature09925 ADSCrossRefGoogle Scholar
  2. Buehler, D., et al.: Properties of solar plage from a spatially coupled inversion of Hinode SP data. A&A 576, id.A27, 19 pp (2015).  https://doi.org.10.1051/0004-6361/201424970
  3. Centeno, R., et al.: Emergence of small-scale magnetic loops in the quiet-sun internetwork. ApJ 666, L137–L140 (2007).  https://doi.org.10.1086/521726 ADSCrossRefGoogle Scholar
  4. De Pontieu, B., et al.: Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574–1577 (2007a).  https://doi.org.10.1126/science.1151747 ADSCrossRefGoogle Scholar
  5. De Pontieu, B., et al.: A tale of two spicules: the impact of spicules on the magnetic chromosphere. PASJ 59, S655–S662 (2007b).  https://doi.org.10.1093/pasj/59.sp3.S655 ADSCrossRefGoogle Scholar
  6. De Pontieu, B., et al.: Ubiquitous torsional motions in type II spicules. ApJ 752, id.L12, 6 pp (2012).  https://doi.org.10.1088/2041-8205/752/1/L12
  7. De Pontieu, B., et al.: The interface region imaging spectrograph (IRIS). SoPh 289, 2733–2779 (2014).  https://doi.org.10.1007/s11207-014-0485-y ADSGoogle Scholar
  8. Fischer, C.E., et al.: Statistics of convective collapse events in the photosphere and chromosphere observed with the Hinode SOT. A&A 504, 583–588 (2009).  https://doi.org.10.1051/0004-6361/200912445 ADSCrossRefGoogle Scholar
  9. Fujimura, D., Tsuneta, S.: Properties of magnetohydrodynamic waves in the solar photosphere obtained with Hinode. ApJ 702, 1443–1457 (2009).  https://doi.org.10.1088/0004-637X/702/2/1443 ADSCrossRefGoogle Scholar
  10. Gos̆ić, M., et al.: The solar internetwork. I. Contribution to the network magnetic flux. ApJ 797, id.49, 11 pp (2014).  https://doi.org.10.1088/0004-637X/797/1/49
  11. Gos̆ić, M., et al.: The solar internetwork. II. Flux appearance and disappearance rates. ApJ 820, id.35, 8 pp (2016).  https://doi.org.10.3847/0004-637X/820/1/35
  12. Hotta, H., et al.: Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 1427–1430 (2016).  https://doi.org.10.1126/science.aad1893 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. Ichimoto, K., et al.: Polarization calibration of the solar optical telescope onboard Hinode. SoPh 249, 233–261 (2008).  https://doi.org.10.1007/s11207-008-9169-9 ADSGoogle Scholar
  14. Iida, Y., Hagenaar, H. J., Yokoyama, T.: Detection of flux emergence, splitting, merging, and cancellation of network field. I. Splitting and merging. ApJ 752, id.149, 9 pp (2012).  https://doi.org.10.1088/0004-637X/752/2/149
  15. Ishikawa, R., Tsuneta S.: Comparison of transient horizontal magnetic fields in a plage region and in the quiet Sun. A&A 495, 607–612 (2009).  https://doi.org.10.1051/0004-6361:200810636 ADSCrossRefGoogle Scholar
  16. Ishikawa, R., et al.: Relationships between magnetic foot points and G-band bright structures. A&A 472, 911–918 (2007).  https://doi.org.10.1051/0004-6361:20066942 ADSCrossRefGoogle Scholar
  17. Ishikawa, R., Tsuneta, S., Jurc̆ák, J.: Three-dimensional view of transient horizontal magnetic fields in the photosphere. ApJ 713, 1310–1321 (2010).  https://doi.org.10.1088/0004-637X/713/2/1310 ADSCrossRefGoogle Scholar
  18. Jin, C.L., Wang, J.X,: Solar cycle variation of the inter-network magnetic field. ApJ 806, id.174, 6 pp. (2015a).  https://doi.org.10.1088/0004-637X/806/2/174
  19. Jin, C.L., Wang, J.X,: Does the variation of solar intra-network horizontal field follow sunspot cycle? ApJ 807, id.70, 6 pp (2015b).  https://doi.org.10.1088/0004-637X/807/1/70
  20. Kaithakkal, A.J., et al.: Photospheric flow field related to the evolution of the sun’s polar magnetic patches observed by Hinode solar optical telescope. ApJ 799, id.139, 13 pp (2015).  https://doi.org.10.1088/0004-637X/799/2/139
  21. Kano, R., Ueda, K., Tsuneta, S.: Photospheric properties of warm EUV loops and hot X-ray loops. ApJ 782, L32, 6 pp (2014).  https://doi.org.10.1088/2041-8205/782/2/L32
  22. Kanoh, R., Shimizu, T., Imada, S.: Hinode and IRIS observations of the magnetohydrodynamic waves propagating from the photosphere to the chromosphere in a sunspot. ApJ 831, id.24, 10 pp (2016).  https://doi.org.10.3847/0004-637X/831/1/24
  23. Katsukawa, Y.: In this volume (2018)Google Scholar
  24. Katsukawa, Y., Orozco Suarez, D.: Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density. ApJ 758, id.139, 9 pp (2012).  https://doi.org.10.1088/0004-637X/758/2/139
  25. Kosugi, T., et al.: The Hinode (solar-B) mission: an overview. SoPh 243, 3–17 (2007).  https://doi.org.10.1007/s11207-007-9014-6 ADSGoogle Scholar
  26. Lamb, D.A., et al.: Solar magnetic tracking. III. Apparent unipolar flux emergence in high-resolution observations. ApJ 720, 1405–1416 (2010).  https://doi.org.10.1088/0004-637X/720/2/1405 Google Scholar
  27. Lamb, D.A., et al.: Solar magnetic tracking. IV. The death of magnetic features. ApJ 774, id.127, 10 pp (2013).  https://doi.org.10.1088/0004-637X/774/2/127
  28. Lites, B.W.: Hinode observations suggesting the presence of a local small-scale turbulent dynamo. ApJ 737, id.52, 9 pp (2011).  https://doi.org.10.1088/0004-637X/737/2/52
  29. Lites, B.W., Ichimoto K.: The SP_PREP data preparation package for the Hinode spectro-polarimeter. SoPh 283, 601–629 (2013).  https://doi.org.10.1007/s11207-012-0205-4 ADSGoogle Scholar
  30. Lites, B.W., et al.: The horizontal magnetic flux of the quiet-sun internetwork as observed with the Hinode spectro-polarimeter. ApJ 672, 1237–1253 (2008).  https://doi.org.10.1086/522922 ADSCrossRefGoogle Scholar
  31. Lites, B.W., et al.: The Hinode spectro-polarimeter. SoPh 283, 579–599 (2013).  https://doi.org.10.1007/s11207-012-0206-3 ADSGoogle Scholar
  32. Lites, B.W., Centeno, R., McIntosh, S.W.: The solar cycle dependence of the weak internetwork flux. PASJ 66(SP1), id.S4, 14 pp (2014).  https://doi.org.10.1093/pasj/psu082
  33. Matsumoto, T., Kitai R.: Temporal power spectra of the horizontal velocity of the solar photosphere. ApJ 716, L19–L22 (2010).  https://doi.org.10.1088/2041-8205/716/1/L19 ADSCrossRefGoogle Scholar
  34. Matsumoto, T., Shibata K.: Nonlinear propagation of Alfven waves driven by observed photospheric motions: application to the coronal heating and spicule formation. ApJ 710, 1857–1867 (2010).  https://doi.org.10.1088/0004-637X/710/2/1857 ADSCrossRefGoogle Scholar
  35. Matsumoto, T., et al.: Cooperative observation of Ellerman bombs between the solar optical telescope aboard Hinode and Hida/Domeless solar telescope. PASJ 60, 577–584 (2008).  https://doi.org.10.1093/pasj/60.3.577 ADSCrossRefGoogle Scholar
  36. Nagata, S.: Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. ApJ 677, L145–L147 (2008).  https://doi.org.10.1086/588026 ADSCrossRefGoogle Scholar
  37. Nishizuka, N., et al.: Giant chromospheric anemone jet observed with Hinode and comparison with magnetohydrodynamic simulations: evidence of propagating Alfven waves and magnetic reconnection. ApJ 683, L83–L86 (2008).  https://doi.org.10.1086/591445 ADSCrossRefGoogle Scholar
  38. Nishizuka, N., et al.: Statistical study of chromospheric anemone jets observed with Hinode/SOT. ApJ 731, id.43, 11 pp (2011). https://doi.org.10.1088/0004-637X/731/1/43
  39. Nishizuka, N., et al.: A laboratory experiment of magnetic reconnection: outflows, heating, and waves in chromospheric jets. ApJ 756, id.152, 11 pp (2012).  https://doi.org.10.1088/0004-637X/756/2/152
  40. Okamoto, T.J., de Pontieu B.: Propagating waves along spicules. ApJ 736, L24, 6 pp (2011).  https://doi.org.10.1088/2041-8205/736/2/L24
  41. Okamoto, T.J., et al.: Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577–1580 (2007).  https://doi.org.10.1126/science.1145447 ADSCrossRefGoogle Scholar
  42. Orozco Suárez, D., et al.: Quiet-sun internetwork magnetic fields from the inversion of Hinode measurements. ApJ 670, L61–L64 (2007).  https://doi.org.10.1086/524139 ADSCrossRefGoogle Scholar
  43. Orozco Suárez, D., Katsukawa, Y.: On the distribution of quiet-sun magnetic fields at different heliocentric angles. ApJ 746, id.182, 15 pp (2012).  https://doi.org.10.1088/0004-637X/746/2/182
  44. Orozco Suárez, D., Katsukawa, Y., Bellot Rubio, L.R.: The connection between internetwork magnetic elements and supergranular flows. ApJ 758, id.L38, 4 pp (2012).  https://doi.org.10.1088/2041-8205/758/2/L38
  45. Parker, E.N.: Hydraulic concentration of magnetic fields in the solar photosphere. VI – adiabatic cooling and concentration in downdrafts. ApJ 221, 368–377 (1978).  https://doi.org.10.1086/156035 Google Scholar
  46. Quintero Noda, C., et al.: Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements. A&A 579, id.A3, 13 pp (2015).  https://doi.org.10.1051/0004-6361/201425414
  47. Singh, K.A.P., et al.: Chromospheric anemone jets and magnetic reconnection in partially ionized solar atmosphere. Phys. Plasmas 18, 111210-1–111210-8 (2011).  https://doi.org.10.1063/1.3655444
  48. Singh K.A.P., et al.: Multiple plasma ejections and intermittent nature of magnetic reconnection in solar chromospheric anemone jets. ApJ 759, id.33, 14 pp (2012a).  https://doi.org.10.1088/0004-637X/759/1/33
  49. Singh K.A.P., et al.: Systematic motion of fine-scale jets and successive reconnection in solar chromospheric anemone jet observed with the solar optical telescope/Hinode. ApJ 760, id.28, 5 pp (2012b).  https://doi.org.10.1088/0004-637X/760/1/28
  50. Shibata, K., et al.: Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591–1594 (2007).  https://doi.org.10.1126/science.1146708 ADSCrossRefGoogle Scholar
  51. Shimizu, T.: In this volume (2018)Google Scholar
  52. Shimizu, T., et al.: Image stabilization system for Hinode (solar-B) solar optical telescope. SoPh 249, 221–232 (2008).  https://doi.org.10.1007/s11207-007-9053-z ADSGoogle Scholar
  53. Shimizu, T., et al.: Hinode observation of the magnetic fields in a sunspot light bridge accompanied by long-lasting chromospheric plasma ejections. ApJ 696, L66–L69 (2009).  https://doi.org.10.1088/0004-637X/696/1/L66 ADSCrossRefGoogle Scholar
  54. Shiota, D., et al.: Polar field reversal observations with Hinode. ApJ 753, id.157, 8 pp (2012).  https://doi.org.10.1088/0004-637X/753/2/157
  55. Skogsrud, H., et al.: On the temporal evolution of spicules observed with IRIS, SDO, and Hinode. ApJ 806, id.170, 10 pp (2015).  https://doi.org.10.1088/0004-637X/806/2/170
  56. Spruit, H.C.: Convective collapse of flux tubes. SoPh 61, 363–378 (1979).  https://doi.org.10.1007/BF00150420 ADSGoogle Scholar
  57. Sterling, A.C.; Moore, R.L.; DeForest, C.E.: Hinode solar optical telescope observations of the source regions and evolution of “Type II” spicules at the solar polar limb. ApJ 714, L1–L6 (2010).  https://doi.org.10.1088/2041-8205/714/1/L1 ADSCrossRefGoogle Scholar
  58. Suematsu, Y., et al.: The solar optical telescope of solar-B (Hinode): the optical telescope assembly. SoPh 249, 197–220 (2008a).  https://doi.org.10.1007/s11207-008-9129-4 ADSGoogle Scholar
  59. Suematsu, Y., et al.: High resolution observations of spicules with Hinode/SOT. In: Matthews, S.A., Davis, J.M., Harra L.K. (eds.) First Results From Hinode. ASP Conference Series, vol. 397, pp. 27–30. Astronomical Society of the Pacific, San Francisco (2008b)Google Scholar
  60. Trujillo Bueno, J., Shchukina, N., Asensio Ramos, A.: A substantial amount of hidden magnetic energy in the quiet Sun. Nature 430, 326–329 (2004).  https://doi.org.10.1038/nature02669 ADSCrossRefGoogle Scholar
  61. Tsiropoula, G., et al.: Solar fine-scale structures. I. Spicules and other small-scale, jet-like events at the chromospheric level: observations and physical parameters. Space Sci. Rev. 169, 181–244 (2012).  https://doi.org.10.1007/s11214-012-9920-2
  62. Tsuneta, S., et al.: The solar optical telescope for the Hinode mission: an overview. SoPh 249, 167–196 (2008a).  https://doi.org.10.1007/s11207-008-9174-z ADSGoogle Scholar
  63. Tsuneta, S., et al.: The magnetic landscape of the sun’s polar region. ApJ 688, 1374–1381 (2008b).  https://doi.org.10.1086/592226 ADSCrossRefGoogle Scholar
  64. Welsch, B.T.: The photospheric poynting flux and coronal heating. PASJ 67, 18-1–18-17 (2015).  https://doi.org.10.1093/pasj/psu151
  65. Yan, L., et al.: Observational evidence for the causes and consequences of chromospheric reconnection. ApJ 804, id.69, 6 pp (2015).  https://doi.org.10.1088/0004-637X/804/1/69
  66. Yeates, A.R., et al.: The coronal energy input from magnetic braiding. A&A 564, id.A131, 10 pp (2014).  https://doi.org.10.1051/0004-6361/201323276

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.National Astronomical Observatory of JapanMitaka, TokyoJapan

Personalised recommendations