Understanding Magneto-convection on Solar Surface with Hinode Satellite Observation
Abstract
The Hinode satellite observations revealed that solar surface magneto-convection is more active than previously expected. Hinode helped enhance our knowledge of small-scale structures with its high temporal and spatial resolution data. In particular, the granular element structure of the magnetic field was observed, and the related phenomena have been widely investigated in the past decade since its launch. In this paper, we examine the observational results of such small-scale magneto-convection fields using the Hinode satellite data and propose future tasks in the following 10 years.
Keywords
Sun: photosphere Sun: surface magnetism Sun: convectionNotes
Acknowledgements
I am grateful to all the editors who helped write this article. Moreover, I appropriate everyone involved in the development and operation of the Hinode satellite for providing the best analytical data so far and for the future.
References
- Abramenko, V.I., Carbone, V., Yurchyshyn, V., Goode, P.R., Stein, R.F., Lepreti, F., Capparelli, V., Vecchio, A.: Turbulent diffusion in the photosphere as derived from photospheric bright point motion. Astrophys. J. 743, 133–142 (2011)ADSCrossRefGoogle Scholar
- Chae, J., Moon, Y.-J., Pevtsov, A.A.: Observational evidence of magnetic flux submergence in flux cancellation sites. Astrophys. J. 602, L65–L68 (2004)ADSCrossRefGoogle Scholar
- Danilovic, S., Beeck, B., Pietarila, A., Schussler, M., Solanki, S.K., Martinez Pillet, M., Bonet, J.A., del Toro Iniesta, J.A., Domingo, V., Barthol, P., Berkefeld, T., Gandorfer, A., Knolker, M., Schmidt, W., Title, A.M.: Transverse component of the magnetic field in the solar photosphere observed by Sunrise. Astrophys. J. 723, L149–L153 (2010)ADSCrossRefGoogle Scholar
- DeForest, C.E., Hagenaar, H.J., Lamb, D.A., Parnell, C.E., Welsch, B.T.: Solar magnetic tracking. I. Software comparison and recommended practices. Astrophys. J. 666, 576–587 (2007)CrossRefGoogle Scholar
- Fischer, C.E., de Wijn, A.G., Centeno, R., Lites, B.W., Keller, C.U.: Statistics of convective collapse events in the photosphere and chromosphere observed with the Hinode SOT. Astron. Astrophys. 504, 583–588 (2009)ADSCrossRefGoogle Scholar
- Giannattasio, F., Stangalini, M., Berrilli, F., Del Moro, D., Bellot Rubio. L.: Diffusion of magnetic elements in a supergranular cell. Astrophys. J. 788, 137–141 (2014)Google Scholar
- Gosic, M., Bellot Rubio, L.R., Orozco Suarez, D., Katsukawa, Y., del Toro Iniesta, J.C.: The solar internetwork. I. Contribution to the network magnetic flux. Astrophys. J. 797, 49–59 (2014)Google Scholar
- Hagenaar, H.J., Schrijver, C.J., Title, A.M., Shine, R.A.: Dispersal of magnetic flux in the quiet solar photosphere. Astrophys. J. 511, 923–944 (1999)ADSCrossRefGoogle Scholar
- Harvey, J.W., Branston, D., Henney, C.J., Keller, C.U.: Seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. 659, L177–L180 (2007)ADSCrossRefGoogle Scholar
- Iida, Y.: Tracking of magnetic flux concentrations over a five-day observation, and an insight into surface magnetic flux transport. J. Space Weather Space Clim. 6, A27 (2016)ADSCrossRefGoogle Scholar
- Iida, Y., Yokoyama, T., Ichimoto, K.: Vector magnetic fields and Doppler velocity structures around a cancellation site in the quiet Sun. Astrophys. J. 713, 325–329 (2010)ADSCrossRefGoogle Scholar
- Iida, Y., Hagenaar, H.J., Yokomaya, T.: Detection of flux emergence, splitting, merging, and cancellation of network fields. I. Splitting and merging. Astrophys. J. 752, 149–157 (2012)ADSCrossRefGoogle Scholar
- Iida, Y., Hagenaar, H.J., Yokoyama, T.: Detection of flux emergence, splitting, merging, and cancellation of network fields. II. Apparent unipolar flux change and cancellation. Astrophys. J. 814, 134–142 (2015)CrossRefGoogle Scholar
- Ishikawa, R., Tsuneta, S., Ichimoto, K., Isobe, H., Katsukawa, Y., Lites, B.W., Nagata, S., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: Transient horizontal magnetic fields in solar plage regions. Astron. Astrophys. 481, L25–L28 (2008)ADSCrossRefGoogle Scholar
- Kubo, M., Low, B.C., Lites, B.W.: Unresolved polarity magnetic fields at flux cancellation site in solar photosphere at 0″.3 spatial resolution. Astrophys. J. 793, L9 (2014)Google Scholar
- Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: Solar magnetic tracking. III. Apparent unipolar flux emergence in high-resolution observations. Astrophys. J. 720, 1405–1416 (2010)Google Scholar
- Lites, B.W., Leka, K.D., Skumanich, A., Pillet, V.M., Shimizu, T.: Small-scale horizontal magnetic fields in the solar photosphere. Astrophys. J. 460, 1019–1026 (1996)ADSCrossRefGoogle Scholar
- Lites, B.W., Kubo, M., Socas-Navaro, H., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Shimizu, T., Nagata, S.: The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. Astrophys. J. 672, 1237–1253 (2008)ADSCrossRefGoogle Scholar
- Nagata, S., Tsuneta, S., Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Yokoyama, T., Tarbell, T.D., Shine, R.A., Berger, T.E., Title, A.M., Bellot Rubio, L.R., Orozco Suarez, D.: Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. Astrophys. J. 677, L145–L147 (2008)ADSCrossRefGoogle Scholar
- Otsuji, K., Kitai, R., Ichimoto, K., Shibata, K.: Statistical study on the nature of solar-flux emergence. Publ. Astron. Soc. Jpn. 63, 1047–105 (2011)ADSCrossRefGoogle Scholar
- Parker, E.N.: Hydraulic concentration of magnetic fields in the solar photosphere. IV. Adiabatic cooling and concentration in downdrafts. Astrophys. J. 211, 368–377 (1978)Google Scholar
- Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb, D.A., Welsch, B.T.: A power-law distribution of solar magnetic fields over more than five decades in flux. Astrophys. J. 698, 75–82 (2009)ADSCrossRefGoogle Scholar
- Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J., Shine, R.A.: Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487, 424–436 (1997)ADSCrossRefGoogle Scholar
- Spruit, H.C.: Convective collapse of flux tubes. Sol. Phys. 61, 363–378 (1979)ADSCrossRefGoogle Scholar
- Stenflo, J.O.: Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun. Astron. Astrophys. 529, A42 (2011)ADSCrossRefGoogle Scholar
- Thornton, L.M., Parnell, C.E.: Small-scale flux emergence observed using Hinode/SOT. Sol. Phys. 269, 13–40 (2011)ADSCrossRefGoogle Scholar