The First Decade of Hinode: Understanding Coronal Mass Ejections

  • Louise Harra
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)


In 2016, the Hinode spacecraft completed ten successful years of operations. This paper aims to summarise the observations of coronal mass ejections that have been made, using Hinode’s three instruments. The three instruments have allowed measurements of magnetic field changes, and plasma dynamics, in the time before the eruption and during the eruption itself. This has provided us with key boundary conditions for the models and has opened up new understanding of the process of triggering an eruption.


Sun:activity Coronal mass ejections 



Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC(UK) as international partners. Scientific operations of the Hinode mission are conducted by the Hinode science team organised at ISAS/JAXA.


  1. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: A model for solar coronal Mass ejections. ApJ 510, 485–493 (1999)ADSCrossRefGoogle Scholar
  2. Archontis, V., Hood, A.W., Savcheva, A., Golub, L., Deluca, E.: On the structure and evolution of complexity in sigmoids: a flux emergence model. ApJ 691, 1276–1291 (2009)ADSCrossRefGoogle Scholar
  3. Attrill, G.D.R., et al: The recovery of CME-related dimmings and the ICME’s enduring magnetic connection to the Sun. ApJ 252, 349–372 (2008)Google Scholar
  4. Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. ApJ 708, 314–333 (2010)ADSCrossRefGoogle Scholar
  5. Baker, D., van Driel-Gesztelyi, L., Green, L.M.: Forecasting a CME by spectroscopic precursor? Sol. Phys. 276, 219–239 (2012)ADSCrossRefGoogle Scholar
  6. Balasubramaniam, K.S., et al.: On the origin of the solar Moreton wave of 2006 December 6. ApJ 723, 587–601 (2010)ADSCrossRefGoogle Scholar
  7. Chen, F., Ding, M.D., Chen, P.F.: Spectroscopic analysis of an EIT wave/dimming observed by Hinode/EIS. ApJ 720, 1254–1261 (2010)ADSCrossRefGoogle Scholar
  8. Dolla, L.R., Zhukov, A.N.: On the nature of the spectral line broadening in solar coronal dimmings. ApJ 730, 113(14pp) (2011)Google Scholar
  9. Harra, L.K., Hara, H., Imada, S., Young, P.R., Williams, D.R., Sterling, A.C., Korendyke, C., Attrill, G.D.R.: Coronal dimming observed with Hinode: outflows related to a Coronal Mass ejection. PASJ 59, S801-S806 (2007)ADSCrossRefGoogle Scholar
  10. Harra, L.K., Mandrini, C.H., Dasso, S., Gulisano, A.M., Steed, K., Imada, S.: Determining the solar source of a magnetic cloud using a velocity difference technique. Sol. Phys. 268, 213–230 (2011)ADSCrossRefGoogle Scholar
  11. Harra, L.K., Matthews, S.A., Culhane, J.L., Cheung, M.C.M., Kontar, E.P., Hara, H.: The location of non-thermal velocity in the early phases of large flares—revealing pre-eruption flux ropes. ApJ 774, 122 (2013)ADSCrossRefGoogle Scholar
  12. Imada, S., Hara, H., Watanabe, T., Kamio, S., Asai, A., Matsuzaki, K., Harra, L.K., Mariska, J.T.: Discovery of a temperature-dependent upflow in the plage region during a gradual phase of the X-class flare. PASJ 59, S793-S799 (2007)ADSCrossRefGoogle Scholar
  13. Imada, S., Hara, H., Watanabe, T., Murakami, I., Harra, L.K., Shimizu, T., Zweibel, E.G.: One-dimensional modeling for temperature-dependent upflow in the dimming region observed by Hinode/EUV imaging spectrometer. ApJ 743, 57 (2011)ADSCrossRefGoogle Scholar
  14. Imada, S., Bamba, Y., Kusano, K.: Coronal behavior before the large flare onset. PASJ 66, S1711 (2014)CrossRefGoogle Scholar
  15. James, A.W., Green, L.M., Palermo, E., Valori, G., Reid, H.A.S., Baker, D., Brooks, D.H., van Driel-Gesztelyi, L., Kilpua, E.K.J.: On-disc observations of flux rope formation prior to its eruption. Sol. Phys. 292, 71 (2017)ADSCrossRefGoogle Scholar
  16. Jin, M., Ding, M.D., Chen, P.F., Fang, C., Imada, S.: Coronal Mass ejection induced outflows observed with Hinode/EIS. ApJ 702, 27–38 (2009)ADSCrossRefGoogle Scholar
  17. Kleint, L., Battaglia, M., Reardon, R., Sainz Dalda, A., Young, P.R., Krucker, S.: The fast filament eruption leading to the X-flare on 2014 March 29. ApJ 806, 9 (2015)ADSCrossRefGoogle Scholar
  18. Kliem, B., Török, T.: Torus instability. Phys. Rev. Lett. 96, 25 (2006)CrossRefGoogle Scholar
  19. Ko, Y.-K., Raymond, J.C., Vrs~nak, B., Vujíc, E.: Modeling UV and X-ray emission in a post-coronal Mass ejection current sheet. ApJ 722, 625 (2010)Google Scholar
  20. Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: Magnetic field structures triggering solar flares and coronal Mass ejections. ApJ 760, 31 (2012)ADSCrossRefGoogle Scholar
  21. Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: Physical conditions in a coronal Mass ejection from Hinode, stereo, and SOHO observations. ApJ 711, 75 (2010)ADSCrossRefGoogle Scholar
  22. Lee, J.-Y., Raymond, J.C., Reeves, K.K., Moon, Y.-J., Kim, K.-P.: Mass and energy of erupting solar plasma observed with the X-ray telescope on Hinode. ApJ 798, 106 (2015)ADSCrossRefGoogle Scholar
  23. Liu, C., Deng, N., Liu, R., Lee, J., Wiegelmann, T., Jing, J., Xu, Y., Wang, S., Wang, H.: Rapid changes of photospheric magnetic field after tether-cutting reconnection and magnetic implosion. ApJ 745, L4 (2012)ADSCrossRefGoogle Scholar
  24. Long, D.M., Williams, D.R., Régnier, S., Harra, L.K.: Measuring the magnetic-field strength of the quiet solar corona using “EIT waves. Solar Phys. 288, 567–583 (2013)ADSCrossRefGoogle Scholar
  25. McIntosh, S.W.: The inconvenient truth about coronal dimmings. ApJ 693, 1306 (2009)ADSCrossRefGoogle Scholar
  26. McKenzie, D.E., Canfield, R.C.: Hinode XRT observations of a long-lasting coronal sigmoid. ApJ 481, 65–68 (2008)Google Scholar
  27. Miklenic, C., Veronig, A.M., Temmer, M., Möstl, C., Biernat, H.K.: Coronal dimmings and the early phase of a CME observed with STEREO and Hinode/EIS. Solar Phys. 273, 125 (2011)ADSCrossRefGoogle Scholar
  28. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: Onset of the magnetic explosion in solar flares and coronal Mass ejections. ApJ 552, 833 (2001)ADSCrossRefGoogle Scholar
  29. Nindos, A., Patsourakos, S., Wiegelmann, T.: On the role of the background overlying magnetic field in solar eruptions. ApJL 748, L6 (2012)ADSCrossRefGoogle Scholar
  30. Patsourakos, S., Vourlidas, A.: On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (Invited Review). Sol. Phys. 281, 187–222 (2012)ADSGoogle Scholar
  31. Reeves, K.K., McCauley, P.I., Tian, H.: Direct observations of magnetic reconnection outflow and CME triggering in a small erupting solar prominence. ApJ 807, 12 (2015)CrossRefGoogle Scholar
  32. Savage, S.L., McKenzie, D.E., Reeves, K.K., Forbes, T.G., Longcope, D.W.: Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 “Cartwheel CME” Flare. ApJ 722, 329 (2010)ADSCrossRefGoogle Scholar
  33. Savcheva, A.S., McKillip, S.C., McCauley, P.I., Hanson, E.M., DeLuca, E.E.: A new sigmoid catalog from Hinode and the solar dynamics observatory: statistical properties and evolutionary histories. Sol. Phys. 289, 329 (2014)CrossRefGoogle Scholar
  34. Sterling, A.C., Moore, R.L., Harra, L.K.: Lateral offset of the coronal Mass ejections from the X-flare of 2006 December 13 and its two precursor eruptions. ApJ 743, 63 (2011)ADSCrossRefGoogle Scholar
  35. Su, Y., Surges, V., van Ballegooijen, A., Deluca, E., Golub, L.: Observations and magnetic field modeling of the flare/coronal Mass ejection event on 2010 April 8. ApJ 734, 53 (2011)ADSCrossRefGoogle Scholar
  36. Syntelis, P., Gontikakis, C., Parsourakos, S., Tsinganos, K.: The spectroscopic imprint of the pre-eruptive configuration resulting into two major coronal mass ejections. A&A 588, A16 (2016)ADSCrossRefGoogle Scholar
  37. Tian, H., McIntosh, S., Xia, L., He, J., Wang, X.: What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations? ApJ 748, 106 (2012)ADSCrossRefGoogle Scholar
  38. Török, T., Kliem, B.: Confined and ejective eruptions of kink-unstable flux ropes. ApJL 630, L97 (2005)ADSCrossRefGoogle Scholar
  39. van Ballegooijen, A.A., Martens, P.C.H.: Formation and eruption of solar prominences. ApJ 343, 971 (1989)ADSCrossRefGoogle Scholar
  40. Williams, D.R., Harra, L.K., Brooks, D.H., Imada, S., Hansteen, V.H.: Evidence from the extreme-ultraviolet imaging spectrometer for axial filament rotation before a large flare. PASJ 61, 493–497 (2009)ADSCrossRefGoogle Scholar
  41. Woods, M.M., Harra, L.K., Matthews, S.A., Dacie, S., Long,D.M.: Observations and modelling of the pre- are period of the 29-March-2014 X1 flare. Sol. Phys. 292, 38 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.UCL-Mullard Space Science LaboratoryDorkingUK

Personalised recommendations