Hinode Observations of Flows and Heating Associated with Magnetic Reconnection During Solar Flares

  • Katharine K. Reeves
Part of the Astrophysics and Space Science Library book series (ASSL, volume 449)


The three instruments on the Hinode satellite give a wealth of information about the aftermath of reconnection in solar flares. As magnetic fields reconnect during solar flares, flows and heating are observed in the corona as well as in the chromosphere, where the magnetic fields are line tied. The X-Ray Telescope and the Extreme ultraviolet Imaging Spectrometer (EIS) have the temperature sensitivity and spatial resolution to observe these phenomena in the corona, and the Solar Optical Telescope and EIS can observe the signatures of heating and flows, respectively, at the flare footpoints. In this chapter, we will review the observational evidence for heating and flows in the corona and chromosphere in the aftermath of flare reconnection.


Reconnection Sun: flares Coronal mass ejections 


  1. Antonucci, E., Dodero, M.A., Peres, G., Serio, S., Rosner, R.: Simulations of the CA XIX spectral emission from a flaring solar coronal loop. I – thermal case. Astrophys. J. 322, 522–543 (1987). ADSCrossRefGoogle Scholar
  2. Asai, A., Yokoyama, T., Shimojo, M., Shibata, K.: Downflow motions associated with impulsive nonthermal emissions observed in the 2002 July 23 solar flare. ApJL 605, L77–L80 (2004). ADSCrossRefGoogle Scholar
  3. Brosius, J.W.: Chromospheric evaporation in solar flare loop strands observed with the extreme-ultraviolet imaging spectrometer on board Hinode. Astrophys. J. 762, 133 (2013). ADSCrossRefGoogle Scholar
  4. Brosius, J.W., Phillips, K.J.H.: Extreme-ultraviolet and x-ray spectroscopy of a solar flare loop observed at high time resolution: a case study in chromospheric evaporation. Astrophys. J. 613, 580–591 (2004). ADSCrossRefGoogle Scholar
  5. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007).
  6. Czaykowska, A., de Pontieu, B., Alexander, D., Rank, G.: Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. ApJL 521, L75–L78 (1999). ADSCrossRefGoogle Scholar
  7. Doschek, G.A., McKenzie, D.E., Warren, H.P.: Plasma dynamics above solar flare soft X-ray loop tops. Astrophys. J. 788, 26 (2014). ADSCrossRefGoogle Scholar
  8. Doschek, G.A., Warren, H.P., Dennis, B.R., Reep, J.W., Caspi, A.: Flare footpoint regions and a surge observed by Hindode/EIS, RHESSI, and SDO/AIA. Astrophys. J. 813, 32 (2015). ADSCrossRefGoogle Scholar
  9. Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics – part seven – dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434–441 (1985a). ADSCrossRefGoogle Scholar
  10. Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics – part six – chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425–433 (1985b). ADSCrossRefGoogle Scholar
  11. Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics. V – Response to thick-target heating. VI – chromospheric evaporation due to heating by nonthermal electrons. VII – dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414–441 (1985c). Google Scholar
  12. Forbes, T.G., Acton, L.W.: Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341 (1996)ADSCrossRefGoogle Scholar
  13. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: The X-ray telescope (XRT) for the Hinode mission. Sol. Phys. 243, 63–86 (2007). ADSCrossRefGoogle Scholar
  14. Hanneman, W.J., Reeves, K.K.: Thermal structure of current sheets and supra-arcade downflows in the solar corona. Astrophys. J. 786, 95 (2014). ADSCrossRefGoogle Scholar
  15. Hara, H., Watanabe, T., Matsuzaki, K., Harra, L.K., Culhane, J.L., Cargill, P., Mariska, J.T., Doschek, G.A.: 2006 December 17 long duration flare observed with the Hinode EUV imaging spectrometer. PASJ 60, 275– (2008)Google Scholar
  16. Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R.: Plasma motions and heating by magnetic reconnection in a 2007 May 19 flare. Astrophys. J. 741, 107 (2011).
  17. Imada, S., Aoki, K., Hara, H., Watanabe, T., Harra, L.K., Shimizu, T.: Evidence for hot fast flow above a solar flare arcade. ApJL 776, L11 (2013). ADSCrossRefGoogle Scholar
  18. Imada, S., Murakami, I., Watanabe, T.: Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare. Phys. Plasmas 22(10), 101206 (2015). ADSCrossRefGoogle Scholar
  19. Innes, D.E., McKenzie, D.E., Wang, T.: Observations of 1000 km s−1 Doppler shifts in 107 K solar flare supra-arcade. Sol. Phys. 217, 267–279 (2003a)ADSCrossRefGoogle Scholar
  20. Innes, D.E., McKenzie, D.E., Wang, T.: SUMER spectral observations of post-flare supra-arcade inflows. Sol. Phys. 217, 247–265 (2003b)ADSCrossRefGoogle Scholar
  21. Kano, R., Sakao, T., Hara, H., Tsuneta, S., Matsuzaki, K., Kumagai, K., Shimojo, M., Minesugi, K., Shibasaki, K., Deluca, E.E., Golub, L., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Dennis, E., Kent, T., Weber, M.: The Hinode X-ray telescope (XRT): camera design, performance and operations. Sol. Phys. 249, 263–279 (2008). ADSCrossRefGoogle Scholar
  22. Kerr, G.S., Fletcher, L.: Physical properties of white-light sources in the 2011 February 15 solar flare. Astrophys. J. 783, 98 (2014).
  23. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: The Hinode (solar-B) mission: an overview. Sol. Phys. 243, 3–17 (2007). ADSCrossRefGoogle Scholar
  24. Krucker, S., Hudson, H.S., Jeffrey, N.L.S., Battaglia, M., Kontar, E.P., Benz, A.O., Csillaghy, A., Lin, R.P.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739, 96 (2011). ADSCrossRefGoogle Scholar
  25. Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: Physical conditions in a Coronal Mass ejection from Hinode, stereo, and SOHO observations. Astrophys. J. 711, 75–98 (2010). ADSCrossRefGoogle Scholar
  26. Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: Post-coronal Mass ejection plasma observed by Hinode. Astrophys. J. 751, 21 (2012). ADSCrossRefGoogle Scholar
  27. Landi, E., Miralles, M.P., Raymond, J.C., Hara, H.: Hot plasma associated with a coronal Mass ejection. Astrophys. J. 778, 29 (2013). ADSCrossRefGoogle Scholar
  28. Lazarian, A., Vishniac, E.T.: Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999). ADSCrossRefGoogle Scholar
  29. Lee, J.Y., Raymond, J.C., Reeves, K.K., Moon, Y.J., Kim, K.S.: Mass and energy of erupting solar plasma observed with the X-ray telescope on Hinode. Astrophys. J. 798, 106 (2015). ADSCrossRefGoogle Scholar
  30. Lin, J.: CME-flare association deduced from catastrophic model of CMEs. Sol. Phys. 219, 169–196 (2004)ADSCrossRefGoogle Scholar
  31. Lin, J., Ko, Y.K., Sui, L., Raymond, J.C., Stenborg, G.A., Jiang, Y., Zhao, S., Mancuso, S.: Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264 (2005). ADSCrossRefGoogle Scholar
  32. Liu, W., Petrosian, V., Dennis, B.R., Holman, G.D.: Conjugate hard X-ray footpoints in the 2003 October 29 X10 flare: unshearing motions, correlations, and asymmetries. Astrophys. J. 693, 847–867 (2009). ADSCrossRefGoogle Scholar
  33. Liu, W., Chen, Q., Petrosian, V.: Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys. J. 767, 168 (2013).
  34. McKenzie, D.E.: Turbulent dynamics in solar flare sheet structures measured with local correlation tracking. Astrophys. J. 766, 39 (2013). ADSCrossRefGoogle Scholar
  35. McKenzie, D.E., Hudson, H.S.: X-ray observations of motions and structure above a solar flare arcade. ApJL 519, L93–L96 (1999). ADSCrossRefGoogle Scholar
  36. McKenzie, D.E., Savage, S.L.: Quantitative examination of supra-arcade downflows in eruptive solar flares. Astrophys. J. 697, 1569–1577 (2009). ADSCrossRefGoogle Scholar
  37. Milligan, R.O.: Spatially resolved nonthermal line broadening during the impulsive phase of a solar flare. Astrophys. J. 740, 70 (2011). ADSCrossRefGoogle Scholar
  38. Milligan, R.O., Dennis, B.R.: Velocity characteristics of evaporated plasma using Hinode/EUV imaging spectrometer. Astrophys. J. 699, 968–975 (2009). ADSCrossRefGoogle Scholar
  39. Milligan, R.O., Gallagher, P.T., Mathioudakis, M., Bloomfield, D.S., Keenan, F.P., Schwartz, R.A.: RHESSI and SOHO CDS observations of explosive chromospheric evaporation. ApJL 638, L117–L120 (2006). ADSCrossRefGoogle Scholar
  40. Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117 (2015). ADSCrossRefGoogle Scholar
  41. Nitta, S., Imada, S., Yamamoto, T.T.: Clear detection of chromospheric evaporation upflows with high spatial/temporal resolution by Hinode XRT. Sol. Phys. 276, 183–197 (2012). ADSCrossRefGoogle Scholar
  42. Polito, V., Reeves, K.K., Del Zanna, G., Golub, L., Mason, H.E.: Joint high temperature observation of a small C6.5 solar flare with Iris/Eis/Aia. Astrophys. J. 803, 84 (2015).
  43. Polito, V., Reep, J.W., Reeves, K.K., Simões, P.J.A., Dudík, J., Del Zanna, G., Mason, H.E., Golub, L.: Simultaneous IRIS and Hinode/EIS observations and modelling of the 2014 October 27 X2.0 class flare. Astrophys. J. 816, 89 (2016).
  44. Reeves, K.K., Golub, L.: Atmospheric imaging assembly observations of hot flare plasma. ApJL 727, L52 (2011). ADSCrossRefGoogle Scholar
  45. Reeves, K.K., Seaton, D.B., Forbes, T.G.: Field line shrinkage in flares observed by the X-ray telescope on Hinode. Astrophys. J. 675, 868–874 (2008). ADSCrossRefGoogle Scholar
  46. Savage, S.L., McKenzie, D.E.: Quantitative examination of a large sample of supra-arcade downflows in eruptive solar flares. Astrophys. J. 730, 98 (2011). ADSCrossRefGoogle Scholar
  47. Savage, S.L., McKenzie, D.E., Reeves, K.K., Forbes, T.G., Longcope, D.W.: Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 ”Cartwheel CME” flare. Astrophys. J. 722, 329–342 (2010). ADSCrossRefGoogle Scholar
  48. Savage, S.L., McKenzie, D.E., Reeves, K.K.: Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. 747, L40 (2012)ADSCrossRefGoogle Scholar
  49. Schanche, N.E., Reeves, K.K., Webb, D.F.: The blob connection: searching for low coronal signatures of solar post-CME blobs. Astrophys. J. 831, 47 (2016). ADSCrossRefGoogle Scholar
  50. Suematsu, Y., Tsuneta, S., Ichimoto, K., Shimizu, T., Otsubo, M., Katsukawa, Y., Nakagiri, M., Noguchi, M., Tamura, T., Kato, Y., Hara, H., Kubo, M., Mikami, I., Saito, H., Matsushita, T., Kawaguchi, N., Nakaoji, T., Nagae, K., Shimada, S., Takeyama, N., Yamamuro, T.: The solar optical telescope of solar-B (Hinode): the optical telescope assembly. Sol. Phys. 249, 197–220 (2008). ADSCrossRefGoogle Scholar
  51. Tian, H., Young, P.R., Reeves, K.K., Chen, B., Liu, W., McKillop, S.: Temporal evolution of chromospheric evaporation: case studies of the M1.1 flare on 2014 September 6 and X1.6 flare on 2014 September 10. Astrophys. J. 811, 139 (2015).
  52. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: The solar optical telescope for the Hinode mission: an overview. Sol. Phys. 249, 167–196 (2008). ADSCrossRefGoogle Scholar
  53. Watanabe, K., Krucker, S., Hudson, H., Shimizu, T., Masuda, S., Ichimoto, K.: G-band and hard X-ray emissions of the 2006 December 14 flare observed by Hinode/SOT and Rhessi. Astrophys. J. 715, 651–655 (2010a). ADSCrossRefGoogle Scholar
  54. Watanabe, T., Hara, H., Sterling, A.C., Harra, L.K.: Production of high-temperature plasmas during the early phases of a C9.7 flare. Astrophys. J. 719, 213–219 (2010b).
  55. Watanabe, K., Shimizu, T., Masuda, S., Ichimoto, K., Ohno, M.: Emission height and temperature distribution of white-light emission observed by Hinode/SOT from the 2012 January 27 X-class solar flare. Astrophys. J. 776, 123 (2013).
  56. Young, P.R., Doschek, G.A., Warren, H.P., Hara, H.: Properties of a solar flare kernel observed by Hinode and SDO. Astrophys. J. 766, 127 (2013). ADSCrossRefGoogle Scholar
  57. Young, P.R., Tian, H., Jaeggli, S.: The 2014 March 29 X-flare: subarcsecond resolution observations of Fe XXI λ1354.1. Astrophys. J. 799, 218 (2015).
  58. Zhang, Q.M., Ji, H.S.: Chromospheric evaporation in sympathetic coronal bright points. A&A 557, L5 (2013). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations