Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 244 Accesses

Abstract

Lots of studies have shown that the Northern Hemispheric terrestrial ecosystems play an important role of net carbon uptake by the observation of eddy flux (Kosugi et al. 2005; Takanashi et al. 2005; Rodrigues et al. 2011; Allard et al. 2008; Grünwald and Bernhofer 2007; Powell et al. 2008; Bracho et al. 2012; Stoy et al. 2008). However, the carbon uptake strength showed great divergence. For example, the GPP of tropical rainforest was up to 3760 g C m−2 year−1 (Hirata et al. 2008), while the GPP of boreal evergreen coniferous forest was only about 18% (705 g C m−2 year−1) of that tropical rainforest (Dunn et al. 2007). The NEP was 467 g C m−2 year−1 in the intensive managed grassland (Ammann et al. 2007), while it was 197 g C m−2 year−1 in the tallgrass steppe (Suyker et al. 2003), and it was −55 to −37 g C m−2 year−1 in the alpine meadow where it showed weak carbon emission (Fu et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A. Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Change Biol. 2008;14(4):714–25.

    Article  Google Scholar 

  • Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J. The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ. 2007;121(1–2):5–20.

    Article  CAS  Google Scholar 

  • Bracho R, Starr G, Gholz HL, Martin TA, Cropper WP, et al. Controls on carbon dynamics by ecosystem structure and climate for southeastern U.S. slash pine plantations. Ecol Monogr. 2012;82(1):101–28.

    Article  Google Scholar 

  • Chen Z, Yu GR, Zhu XJ, et al. Spatial pattern and regional characteristics of terrestrial ecosystem carbon fluxes in the Northern Hemisphere. Quat Sci. 2014;34(4):710–22.

    CAS  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Change Biol. 2007;13(3):577–90.

    Article  Google Scholar 

  • Fu YL, Yu GR, Wang YF, Li ZQ, Hao YB, et al. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Sci Chin Ser D: Earth Sci. 2006;49(S2):196–206.

    Article  Google Scholar 

  • Fu YL, Zheng ZM, Yu GR, Hu ZM, Sun XM, et al. Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences. 2009;6(12):2879–93.

    Article  CAS  Google Scholar 

  • Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, et al. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ. 2007;121(1–2):93–120.

    Article  CAS  Google Scholar 

  • Grünwald T, Bernhofer C. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus Ser B. 2007;59(3):387–96.

    Article  Google Scholar 

  • Hao YB, Wang YF, Mei XR, Huang XZ, Cui XY, et al. CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol. 2008;33(2):133–43.

    Article  Google Scholar 

  • Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, et al. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agric For Meteorol. 2008;148(5):761–75.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). Climate change 2013: the physical science basis. In: Stocker TF, Dahe Q, Plattner G-K et al., editors. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013. 1535 pp.

    Google Scholar 

  • Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, et al. Europe’s terrestrial biosphere absorbs 7–12% of European anthropogenic CO2 emissions. Science. 2003;300(5625):1538–42.

    Article  CAS  PubMed  Google Scholar 

  • Kosugi Y, Tanaka H, Takanashi S, Matsuo N, Ohte N, et al. Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest. Agric For Meteorol. 2005;132(3–4):329–43.

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15(3):259–63.

    Article  Google Scholar 

  • Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, et al. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Glob Change Biol. 2005;11(11):1941–55.

    Google Scholar 

  • Powell TL, Gholz HL, Clark KL, Starr G, Cropper WP, et al. Carbon exchange of a mature, naturally regenerated pine forest in north Florida. Glob Change Biol. 2008;14(11):2523–38.

    Google Scholar 

  • Rodrigues A, Pita G, Mateus J, Kurz-Besson C, Casquilho M, et al. Eight years of continuous carbon fluxes measurements in a Portuguese eucalypt stand under two main events: drought and felling. Agric For Meteorol. 2011;151(4):493–507.

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, et al. Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Glob Change Biol. 2008;14(6):1409–27.

    Article  Google Scholar 

  • Suyker AE, Verma SB, Burba GG. Interannual variability in net CO2 exchange of a native tallgrass prairie. Glob Change Biol. 2003;9(2):255–65.

    Article  Google Scholar 

  • Takanashi S, Kosugi Y, Tanaka Y, Yano M, Katayama T, et al. CO2 exchange in a temperate Japanese cypress forest compared with that in a cool-temperate deciduous broad-leaved forest. Ecol Res. 2005;20(3):313–24.

    Article  Google Scholar 

  • Xiao JF, Zhuang QL, Law BE, Chen JQ, Baldocchi DD, et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens Environ. 2010;114(3):576–91.

    Article  Google Scholar 

  • Yan JH, Zhang YP, Yu GR, Zhou GY, Zhang LM, et al. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. Agric For Meteorol. 2013;182–183:257–65.

    Article  Google Scholar 

  • Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, et al. Spatial pattern and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Change Biol. 2013;19(3):798–810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z. (2018). Characteristics of Carbon Fluxes. In: Spatial Patterns and Mechanisms for Terrestrial Ecosystem Carbon Fluxes in the Northern Hemisphere. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7703-6_3

Download citation

Publish with us

Policies and ethics