Skip to main content

Silicon Sensors in Experimental High Energy Physics Experiments

  • Conference paper
  • First Online:
  • 929 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 201))

Abstract

Si detectors are now being widely used in experimental high energy physics (HEP). This detector technology is more popularly used as particle tracking detectors. Its application is diverse, viz. from the track reconstruction, various parameters of the incident particle like the flight of path, the momentum in the presence of a magnetic field, secondary or a decay vertex, interaction vertex, etc., can be deduced. Si detectors are also used as active layers in sampling calorimeters in some of the experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.G. McKay, A germanium counter. Phys. Rev. 76, 1537 (1949)

    Article  ADS  Google Scholar 

  2. K.G. McKay, Electron-hole production in germanium by alpha-particles. Phys. Rev. 84, 829–832 (1951)

    Article  ADS  Google Scholar 

  3. J.M. McKenzie, D.A. Bromley, Gold surface barrier (Si) diode. Phys. Soc. 4, 422 (1959)

    Google Scholar 

  4. E.M. Pell, Ion drift in an n-p junction. J. Appl. Phys. 31, 291 (1960)

    Article  ADS  Google Scholar 

  5. J.H. Elliott, Development of Lithium “drifted” thick detectors. NIM 12, 60 (1961)

    Article  Google Scholar 

  6. J. Kemmer, Fabrication of low noise silicon radiation detectors by the planar process. NIM 169, 499–502 (1980)

    Article  Google Scholar 

  7. E. Engels, A silicon strip detector system for Fermilab. NIM A 226, 59 (1984)

    Article  ADS  Google Scholar 

  8. H. Bottcher, Performance of silicon strip detectors with 50-micrometer and 100-micrometer strip distance. NIM A 226, 72 (1984)

    Article  ADS  Google Scholar 

  9. P.E. Karchin, Test beam studies of a silicon microstrip vertex detector. IEEE Trans. Nucl. Sci. 32(1), 612 (1985)

    Article  ADS  Google Scholar 

  10. F. Bedeschi, A silicon vertex detector for CDF. CDF Note 362, 123 (1985)

    Google Scholar 

  11. N. Bingefors, The DELPHI microvertex detector. NIM A 328, 447–471 (1993)

    Article  ADS  Google Scholar 

  12. M. Sitta, The silicon drift detector of the ALICE experiment. NIM A 617, 591–592 (2010)

    Google Scholar 

  13. C. Kuo, The commissioning and results on the performance of the CMS Preshower detector. J. Phys.: Conf. Sers 293, 012058 (2011)

    Google Scholar 

  14. C. Parkes, First results from the LHCb Vertex Locator. NIM A 628, 81–83 (2011)

    Google Scholar 

  15. F. Meier, First alignment of the complete CMS tracker. NIM A 636, 177–181 (2011)

    Google Scholar 

  16. F. Dajma, Commissioning & operation of the ATLAS pixel detector at the CERN LHC collider. JINST 6 C01082

    Google Scholar 

  17. J.A. Gray, The CMS Phase-I pixel detector. JINST 8 C12047

    Google Scholar 

  18. J.P. Colinge, C.A. Colinge, Physics of Semiconductor Devices (Springer, New York, 2006)

    Google Scholar 

  19. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010)

    Google Scholar 

  20. D.A. Neaman, Semiconductor Physics and Devices, Basic Principles (McGraw Hill, Avenue of the Americas, New York, 2003). 10020

    Google Scholar 

  21. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer, Berlin, 1994)

    Book  Google Scholar 

  22. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1985), p. 2

    Google Scholar 

  23. G. Lutz, Semiconductor Radiation Detectors (Springer, Berlin, 1999). 16, 65, 85, 86

    MATH  Google Scholar 

  24. F. Hartmann, Evolution of Sensor Technology in Particle Physics (Springer, STMP 231, 2009) ISSN 0081-3869

    Google Scholar 

  25. M. Moll, Radiation damage in silicon particle detectors. DESY-THESIS-1999-040

    Google Scholar 

  26. ATLAS Silvaco, Version 5.15.32.R Nov 2009, Users manual, Silvaco webpage. http://www.silvaco.com

  27. Sentaurus TCAD, Industry–Standard process and device simulators, synopsys documentation. http://www.synopsys.com

  28. Cogenda, Genius device simulator, User’s guides, Cogenda webpage. http://www.cogenda.com

  29. CMS Detector Note, Simulation of Silicon Devices for the CMS Phase II Tracker Upgrade. CMS DN-2014/016

    Google Scholar 

  30. R. Dalal, G. Jain, A. Bhardwaj, K. Ranjan, Simulation of irradiated Si detectors. Proc. Sci. (Vertex) 030 (2014)

    Google Scholar 

  31. R. Dalal, Performance Characteristics of Si Sensors at Collider Experiments. Ph.D. Thesis, University of Delhi (2015)

    Google Scholar 

  32. V. Eremin, E. Verbitskaya, Z. Li, The origin of double peak electric field distribution in heavily irradiated silicon detectors. NIM A 476, 556–564 (2002)

    Article  ADS  Google Scholar 

  33. CMS Tracker Technical Design Report. CERN/LHCC 98–6, CMS TDR 5 (1998). CERN/LHCC 2000-016, CMS TDR 5 Addendum (2000)

    Google Scholar 

  34. S. Mallows, BRIL webpage https://twiki.cern.ch/twiki/bin/viewauth/CMSPublic/BRILRSelbaHGC

  35. M. Guthoff, BRIL webpage. https://twiki.cern.ch/twiki/bin/view/CMSPublic/BRILRS1D1MeVneqAtTracker

  36. Hamamatsu K. Photonics, Hamamatsu webpage. http://www.hamamatsu.com/us/en/index.html

  37. G. Kramberger, V. Cindro, I. Dolenc, I. Mandic, M. Mikuz, M. Zavrtanik, Comparison of pad detectors produced on different silicon materials after irradiation with neutrons, protons and pions. NIM A 612, 288–295 (2010)

    Article  ADS  Google Scholar 

  38. R. Eber, Investigations of new Sensor Designs and Development of an effective Radiation Damage Model for the Simulation of highly irradiated Silicon Particle Detectors. Dissertation Thesis. Karlsruhe Institute of Technology, IEKP-KA/2013-27

    Google Scholar 

  39. R. Dalal, G. Jain, A. Bhardwaj, K. Ranjan, Comparison of radiation hardness properties of p+n- and n+p- Si strip sensors using simulation approach, in 23rd RD50 Workshop (CERN, Switzerland, 2013)

    Google Scholar 

  40. T. Peltola, Numerical simulations of semiconductor radiation detectors for high-energy physics and spectroscopy applications. Ph.D. thesis, University of Helsinki (2016)

    Google Scholar 

  41. C. Piemonte, Device simulations of isolation techniques for silicon microstrip detectors made on p-type substrates. IEEE Trans. Nucl. Sci. 53(3), 1694 (2006)

    Article  ADS  Google Scholar 

  42. M. Printz, Analysis of n-in-p type silicon detectors for high radiation environment with fast analogue and binary readout systems. Ph.D. Thesis, Karlsruhe Institute of Technology (2016). IEKP-KA/2016-1

    Google Scholar 

  43. P. Saxena, K. Ranjan, A. Bhardwaj, R.K. Shivpuri, S. Bhattacharya, Development of multi-guard ring-equipped p+–n Si microstrip detectors for the SiD detector at the ILC. Semicond. Sci. Technol. 25, 105012 (2010)

    Article  ADS  Google Scholar 

  44. K. Lalwani, G. Jain et al., Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments. Nucl. Instrum. Methods A 824, 428–431 (2015). (13th Elba Conference)

    Article  ADS  Google Scholar 

  45. G. Jain, et al., Development and characterization of ac-coupled Si strip detectors for nuclear & high energy physics applications, in DAE Symposium on Nuclear Physics, vol. 59. (Dec. 08 – 12, 2014) pp. 954–955

    Google Scholar 

Download references

Acknowledgements

Author is thankful to University of Delhi R&D grant and DST for research and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhardwaj, A., Jain, G., Ranjan, K. (2018). Silicon Sensors in Experimental High Energy Physics Experiments. In: Biswas, S., Das, S., Ghosh, S. (eds) Advanced Detectors for Nuclear, High Energy and Astroparticle Physics. Springer Proceedings in Physics, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-10-7665-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7665-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7664-0

  • Online ISBN: 978-981-10-7665-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics