Agroforestry pp 263-297 | Cite as

Alley Cropping with Short Rotation Coppices in the Temperate Region: A Land-use Strategy for Optimizing Microclimate, Soil Organic Carbon and Ecosystem Service Provision of Agricultural Landscapes

  • Ansgar Quinkenstein
  • Penka Tsonkova
  • Dirk Freese


Conventional agricultural practices have been associated with negative effects, such as reduction of soil fertility, pollution of surface and groundwater and loss of biodiversity and ecosystem services (ES). To mitigate these effects, while sustaining high levels of crop production, innovative land-use practices are necessary. A promising land-use approach are alley cropping systems (ACS) with short rotation coppices, which are agroforestry systems, that combine the cultivation of conventional agricultural crops with fast-growing trees to produce biomass for energy purposes at the same time on the same piece of land. In the presented study, the effects of trees planted in ACS on agricultural land in Central Europe on microclimate, on soil organic matter (SOM) and on the provision of ecosystem services (ES) were elaborated, based on a review of relevant literature and results of recent research projects. The outcomes suggest that, due to their structural complexity, ACS can be more efficient regarding main microclimatic factors than either crop or tree monocultural systems. As a main factor, wind protection by the hedgerows in ACS was identified. Other microclimatic factors, such as light, temperature or evaporation, were also clearly influenced by the presence of trees; however, occurring interactions were often complex, and cause-effect relations were difficult to ascertain. A further outcome is that planting trees on agricultural sites potentially increases soil organic carbon (SOC) stocks, which can be considered as a main indicator for soil humus and soil fertility. However, it became evident that, in addition to the depth dimension (30 cm sampling depth can be considered as insufficient), the dimension of time needs to be taken more strongly into account. The authors suggest a division of the lifetime of agricultural trees in an initial (SOC stocks may decrease), a transitional (stocks approach steady state; SOC distribution pattern in the soil may change) and a steady-state phase (no major changes in stocks or distribution patterns) when interpreting effects of trees on SOC. Subsequently, in the attempt to value the effects of ACS on crop productivity and soil, suitable and transferable methods for the assessment of ES were discussed. It was demonstrated that the provision of ES from ACS was higher than from conventional agriculture and that ACS can increase productivity while sustaining high levels of SOC. Summarizing, the results suggested that ACS – if designed and managed appropriately – may function as a practical and diverse tool to mitigate negative effects of agricultural production.


Agroforestry Alley cropping system Biomass production Ecosystem services Microclimate Soil organic carbon 


  1. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York state. Biomass Bioenergy 20(6):399–411CrossRefGoogle Scholar
  2. Alam M, Olivier A, Paquette A, Dupras J, Revéret J-P, Messier C (2014) A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor Syst 88(4):679–691CrossRefGoogle Scholar
  3. Ali W (2009) Modelling of biomass production potential of poplar in short rotation plantations on agricultural lands of Saxony, Germany. PhD Thesis. Technical University Dresden, Dresden, Germany, p 130Google Scholar
  4. Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–370PubMedCrossRefGoogle Scholar
  5. Bagstad KJ, Semmens DJ, Waage S, Winthrop R (2013) A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv 5:27–39CrossRefGoogle Scholar
  6. Baldock JA, Nelson PN (1999) Soil organic matter. In: Summer M (ed) Handbook of soil science. CRC Press, Boca Raton/London/New York, pp 25–84Google Scholar
  7. Baldwin CS (1988) The influence of field windbreaks on vegetable and specialty crops. Agric Ecosyst Environ 22:191–203CrossRefGoogle Scholar
  8. Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950CrossRefGoogle Scholar
  9. Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79(3):343–353CrossRefGoogle Scholar
  10. Bemmann A, Feger K-H, Gerold D, Große W, Hartmann K-U, Petzold R, Röhle H, Schweinle J, Steinke C (2007) Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in der Region Großenhain im Freistaat Sachsen. Forstarchiv 78:95–101Google Scholar
  11. Blenk H (1953) Strömungstechnische Beiträge zum Windschutzproblem. Landtechnische Forschung 3(3):87–95Google Scholar
  12. Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2016) Scheffer/Schachtschabel: Soil Science. Springer, Berlin, p 618CrossRefGoogle Scholar
  13. Böhm C, Quinkenstein A, Freese D (2012) Vergleichende Betrachtung des Agrarholz- und Energiemaisanbaus aus Sicht des Bodenschutzes. Bodenschutz 2:36–43Google Scholar
  14. Böhm C, Kanzler M, Freese D (2014) Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agrofor Syst 88:579–591CrossRefGoogle Scholar
  15. Böhmel C (2007) Comparative performance of annual and perennial energy cropping systems under different management regimes. PhD thesis. University of Hohenheim, Hohenheim, Germany, p 139Google Scholar
  16. Bolte A, Wellbrock N, Dunger K (2011) Welche Maßnahmen sind umsetzbar? AFZ-Der Wald 2:27–29Google Scholar
  17. Brandle J, Hodges L, Zhou X (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61–62(1):65–78Google Scholar
  18. Brenner AJ (1991) Tree-crop interactions within a Sahelian windbreak system. PhD thesis. University of Edinburgh, Edinburgh, UK, p 284Google Scholar
  19. Brock C, Franko U, Oberholzer H-R, Kuka K, Leithold G, Kolbe H, Reinhold J (2013) Humus balancing in Central Europe – concepts, state of the art, and further challenges. J Plant Nutr Soil Sci 176(1):3–11CrossRefGoogle Scholar
  20. Buck LE, Lassoie JP, Fernandes EC (1999) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton/London/New York, p 432Google Scholar
  21. Buckwell A, Uhre AN, Williams A, Polakova J, Blum WEH, Schiefer J, Lair GJ, Heissenhuber A, Schieβl P, Kramer C, Haber W (2014) The sustainable intensification of European agriculture. The RISE Foundation, Brussels, p 98Google Scholar
  22. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123(2):105–115Google Scholar
  23. Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31(2):132–140PubMedCrossRefGoogle Scholar
  24. Cleugh HA (1998) Effects of windbreaks on airflow, microclimates and crop yields. Agrofor Syst 41:55–84CrossRefGoogle Scholar
  25. Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in north Central United States. Environ Manag 33(1):299–308Google Scholar
  26. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  27. Daily GC (ed) (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, p 412Google Scholar
  28. Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of short rotation coppice cultivation on water issues. Agric For Res 59(3):197–206Google Scholar
  29. Dominati EJ, Mackay AD, Green JBS (2016) An ecosystems approach to quantify soil performance for multiple outcomes: the future of land evaluation? Soil Sci Soc Am J 80:438–449CrossRefGoogle Scholar
  30. Dupraz C, Burgess P, Gavaland A, Graves A, Herzog F, Incoll LD, Jackson N, Keesman K, Lawson G, Lecomte I, Liagre F, Mantzanas K, Mayus M, Moreno G, Palma J, Papanastasis V, Paris P, Pilbeam DJ, Reisner Y, van Noordwijk M, Vincent G, van der Werf W (2005) SAFE final report – synthesis of the silvoarable agroforestry for Europe project. European Union, INRA-UMR System editions, p 254Google Scholar
  31. Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem services assessments around European agroforestry. Ecol Indic 62:47–65CrossRefGoogle Scholar
  32. Feldhake CM (2001) Microclimate of a natural pasture under planted Robinia pseudoacacia in central Appalachia, West Virginia. Agrofor Syst 53:297–303CrossRefGoogle Scholar
  33. Feldwisch N, Frede H, Hecker F (1998) Verfahren zum Abschätzen der Erosions und Auswaschungsgefahr. In: und S. Dabbert H-GF (eds) Handbuch zum Gewässerschutz in der Landwirtschaft. Ecomed, Landsberg, pp 22–57Google Scholar
  34. Garten CTJ (2002) Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA. Biomass Bioenergy 23:93–102CrossRefGoogle Scholar
  35. Graves A, Burgess P, Palma J, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, de Nooy AK, van den Briel J (2007) Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol Eng 29(4):434–449CrossRefGoogle Scholar
  36. Greef JM, Schwarz K-U, Hoffmann J, Langhof M, Lamerre J, Grünewald H, Pfennig K, von Wühlisch G, Schmidt C (2012) Ökonomische und ökologische Bewertung von Agroforstsystemen in der landwirtschaftlichen Praxis (Verbundvorhaben AgroForstEnergie, Abschlussbericht Teilvorhaben 3: Grünland- und Ackerflächen in Niedersachsen). Brandenburgische Technische Universität Cottbus, p 87Google Scholar
  37. Grimm M, Jones R, Montanarella L (2002) Soil erosion risk in Europe. European Soil Bureau – Institute for Environment and Sustainability, JRC, Ispra, p 40Google Scholar
  38. Grünewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29(4):319–328CrossRefGoogle Scholar
  39. Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2(3):123–133CrossRefGoogle Scholar
  40. Haines-Young R, Potschin M (2013) Consultation on Version 4, August–December 2012 – Report to the European Environment Agency (Revised January 2013). Common International Classification of Ecosystem Services (CICES), EEA Framework Contract No. EEA/IEA/09/003, p 32Google Scholar
  41. Hall DO, Mynick HE, Williams RH (1991) Cooling the greenhouse with bioenergy. Nature 353:11–12CrossRefGoogle Scholar
  42. Hellebrand HJ, Strähle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutr Cycl Agroecosyst 87(2):175–186CrossRefGoogle Scholar
  43. Heyn N, Jörgensen RG, Amthauer-Gallardo D, Wachendorf C (2011) Streufall und Streuumsatz in Böden von Kurzumtriebsplantagen. In: DBG (eds) Tagungsband der Jahrestagung der Deutschen Bodenkundlichen Gesellschaft (DBG) 2011: Böden verstehen – Böden nutzen – Böden fit machen, abgehalten vom 03. bis zum 09. September 2011, Berlin, Deutsche Bodenkundliche Gesellschaft (DBG), pp 1–4Google Scholar
  44. Hou Q, Brandle J, Hubbard K, Schoeneberger M, Nieto C, Francis C (2003) Alteration of soil water content consequent to root-pruning at a windbreak/crop interface in Nebraska, USA. Agrofor Syst 57(2):137–147CrossRefGoogle Scholar
  45. Hüttl RF, Dominik P (2008) Anbau nachwachsender Rohstoffe: Auswirkungen auf die Humusentwicklung an den Produktionsstandorten. In: Hüttl RF, Gerwin W, Bens O (eds) Zum Stand der Humusversorgung der Böden in Deutschland. Brandenburgische Technische Universität, pp 207–213Google Scholar
  46. Jenkinson DS (1971) The accumulation of organic matter in soil left uncultivated – Rothamsted Experimental Station report for 1970. Rothamsted Experimental Station, pp 113–137Google Scholar
  47. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10CrossRefGoogle Scholar
  48. Jose S, Gillespie AR, Seifert JR, Biehle DJ (2000a) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 2. Competition for water. Agrofor Syst 48(1):41–59CrossRefGoogle Scholar
  49. Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE (2000b) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 3. Competition for nitrogen and litter decomposition dynamics. Agrofor Syst 48(1):61–77CrossRefGoogle Scholar
  50. Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manag 121(1–2):85–99CrossRefGoogle Scholar
  51. Kanzler M, Böhm C (2015) Nachhaltige Erzeugung von Energieholz in Agroforstsystemen (AgroForstEnergie II) – Abschlussbericht Teilvorhaben 2: Bodenschutz und Bodenfruchtbarkeit, Wasserhaushalt und Mikroklima. Brandenburgische Technische Universität Cottbus–Senftenberg, p 161Google Scholar
  52. Kolbe H (2010) Site-adjusted organic matter–balance method for use in arable farming systems. J Plant Nutr Soil Sci 173(5):678–691CrossRefGoogle Scholar
  53. Körschens M, Rogasik J, Schulz E, Böning H, Eich D, Ellerbrock R, Franko U, Hülsbergen K-J, Köppen D, Kolbe H, Leithold G, Merbach I, Peschke H, Prystav W, Reinhold J, Zimmer J (2004) VDLUFA Standpunkt: Humusbilanzierung – Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Verband Untersuchungs- Deutscher und Forschungsanstalten Landwirtschaftlicher (VDLUFA), p 12Google Scholar
  54. Kort J (1988) Benefits of windbreaks to field and forage crops. Agric Ecosyst Environ 22–23:165–190CrossRefGoogle Scholar
  55. Kowalchuk TE, de Jong E (1995) Shelterbelts and their effect on crop yield. Can J Soil Sci 75(4):543–550CrossRefGoogle Scholar
  56. Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4)Google Scholar
  57. Kumar BM, Nair PKR (eds) (2011) Carbon sequestration potential of agroforestry systems – opportunities and challenges. Springer, New York, p 530Google Scholar
  58. Kuntze H, Roeschmann G, Schwerdtfeger G (1994) Bodenkunde – 5. neubearbeitete und erweiterte Auflage. Eugen Ulmer, Stuttgart, p 424Google Scholar
  59. Lamersdorf N, Schulte-Bisping H (2010) Impact of short rotation forestry on soil ecological services. In: Proceedings of the 19th World Congress of soil science: soil solutions for a changing world held 1–6 August 2010 in Brisbane (Australia), pp 48–51Google Scholar
  60. Lindroth A, Båth A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. For Ecol Manag 121(1–2):57–65CrossRefGoogle Scholar
  61. Loveland P, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Tillage Res 70(1):1–18CrossRefGoogle Scholar
  62. Maes J, Egoh B, Willemen L, Liquete C, Vihervaara P, Schägner JP, Grizzetti B, Drakou EG, Notte AL, Zulian G, Bouraoui F, Paracchini ML, Braat L, Bidoglio G (2012a) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1(1):31–39CrossRefGoogle Scholar
  63. Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012b) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12CrossRefGoogle Scholar
  64. Marzelli S, Grêt-Regamey A, Moning C, Rabe S-E, Koellner T, Daube S (2014) Die Erfassung von Ökosystemleistungen – Erste Schritte für eine Nutzung des Konzepts auf nationaler Ebene für Deutschland. Nat Landsch 89:66–73Google Scholar
  65. McNaughton K (1988) 1. Effects of windbreaks on turbulent transport and microclimate. Agric Ecosyst Environ 22:17–39CrossRefGoogle Scholar
  66. Mead R, Willey RW (1980) The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric 16(3):217–228CrossRefGoogle Scholar
  67. Medinski TV, Freese D, Böhm C, Slazak A (2014) Soil carbon fractions in short rotation poplar and black locust coppices, Germany. Agrofor Syst 88(3):505–515CrossRefGoogle Scholar
  68. Mirck J, Böhm C, Kanzler M, Freese D (2015) Blattstreumengen in Gehölzstreifen und angrenzenden Ackerbereichen innerhalb eines Agroforstsystems. In: Kage H, Sieling K, Francke-Weltmann L (eds) Multifunktionale Agrarlandschaften: Pflanzenbaulicher Anspruch, Biodiversität, Ökosystemdienstleistungen, Tagungsband der 58. Tagung der Gesellschaft für Pflanzenbauwissenschaften e. V., 22.–24. September 2015 in Braunschweig, pp 83–84Google Scholar
  69. Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry – operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121(1–2):123–136CrossRefGoogle Scholar
  70. Monteith JL, Ong CK, Corlett JE (1991) Microclimatic interactions in agroforestry systems. For Ecol Manag 45(1–4):31–44CrossRefGoogle Scholar
  71. Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3(2):97–128CrossRefGoogle Scholar
  72. Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht, p 499CrossRefGoogle Scholar
  73. Nair PKR (2011) Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems – opportunities and challenges. Springer, New York, pp 3–16CrossRefGoogle Scholar
  74. Nair PKR, Kumar BM, Nair DV (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172(1):10–23CrossRefGoogle Scholar
  75. Nii-Annang S, Grünewald H, Freese D, Hüttl R, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45(5):531–538CrossRefGoogle Scholar
  76. Nordstrom KF, Hotta S (2004) Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma 121(3–4):157–167CrossRefGoogle Scholar
  77. Norton RL (1988) Windbreaks: benefits to orchard and vineyard crops. Agric Ecosyst Environ 22:205–213CrossRefGoogle Scholar
  78. Nuberg I (1998) Effect of shelter on temperate crops: a review to define research for Australian conditions. Agrofor Syst 41:3–34CrossRefGoogle Scholar
  79. OECD (2008) Environmental performance of agriculture in OECD countries since 1990. Organisation for Economic Co-operation and Development (OECD), p 208Google Scholar
  80. Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw Biol 29(2):243–258CrossRefGoogle Scholar
  81. Palma JHN, Graves AR, Crous-Duran J, Upson M, Paulo JA, Oliveira TS, de Jalón SSG, Burgess PJ (2016) Yield-SAFE model improvements. Milestone report 29 (6.4) for EU FP7 research project: AGFORWARD 613520. AGFORWARD, p 30Google Scholar
  82. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257CrossRefGoogle Scholar
  83. Petzold R, Schubert B, Feger K-H (2010) Biomasseproduktion, Nährstoffallokation und bodenökologische Veränderungen einer Pappel-Kurzumtriebsplantage in Sachsen (Deutschland). Die Bodenkultur 61(3):23–35Google Scholar
  84. Porter J, Costanza R, Sandhu H, Sigsgaard L, Wratten S (2009) The value of producing food, energy and ecosystem services within an agro-ecosystem. Ambio 38(4):186–193PubMedCrossRefGoogle Scholar
  85. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327CrossRefGoogle Scholar
  86. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond B 365:2959–2971CrossRefGoogle Scholar
  87. Pugesgaard S, Schelde K, Larsen SU, Lærke PE, Jørgensen U (2015) Comparing annual and perennial crops for bioenergy production – influence on nitrate leaching and energy balance. GCB Bioenerg 7(5):1136–1149CrossRefGoogle Scholar
  88. Quinkenstein A, Jochheim H (2015) Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany – model development and application. J Environ Manag 168:53–66CrossRefGoogle Scholar
  89. Quinkenstein A, Kanzler M (2018) Wirkungen von Agrargehölzen auf den Bodenstoffhaushalt. In: Böhm C, Veste M (eds) Agrarholz – Schnellwachsende Bäume für die Energieholzgewinnung. Springer. (in press)Google Scholar
  90. Quinkenstein A, Schultze B, Grünewald H, Wöllecke J, Schneider BU, Jochheim H, Hüttl RF (2009a) Landschaftsökologische Aspekte der Dendromasseproduktion – Analyse und Bewertung von Risiken und Vorteilswirkungen. In: Murach D, Knur L, Schultze M (eds) DENDROM - Zukunftsrohstoff Dendromasse: Systemische Analyse, Leitbilder und Szenarien für die nachhaltige energetische und stoffliche Verwertung von Dendromasse aus Wald- und Agrarholz. Verlag Kessel, pp 317–344Google Scholar
  91. Quinkenstein A, Wöllecke J, Böhm C, Grünewald H, Freese D, Schneider BU, Hüttl RF (2009b) Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ Sci Pol 12:1112–1121CrossRefGoogle Scholar
  92. Quinkenstein A, Böhm C, Matos E, Freese D, Hüttl RF (2011) Assessing the carbon sequestration in short rotation coppice systems of Robinia pseudoacacia L. on marginal sites in NE-Germany. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems – opportunities and challenges. Springer, New York, pp 201–216CrossRefGoogle Scholar
  93. Quinkenstein A, Pape D, Freese D, Schneider BU, Hüttl RF (2012) Biomass, carbon and nitrogen distribution in living woody plant parts of Robinia pseudoacacia L. growing on reclamation sites in the mining region of lower Lusatia (Northeast Germany). Int J For Res 2012:1–10Google Scholar
  94. Quinkenstein A, Janus T, Freese D (2017) Depth gradient of soil C, N and S contents in an alley cropping system for biomass production. In: Böhm C (ed) Bäume in der Land(wirt)schaft, von der Theorie in die Praxis – Tagunsgband des 5. Forums Agroforstsysteme, abgehalten vom 30.11.2016 bis zum 01.12.2016 in Senftenberg (Deutschland)Google Scholar
  95. Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci USA 107(11):5242–5247PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rehbein K, Sandhage-Hofmann A, Amelung W (2013) Langfristiger Kohlenstoffumsatz und C-Sequestrierung. In: Wagener F, Böhmer J, Kuhn D, Sutterer N (eds) Entwicklung extensiver Landnutzungskonzepte für die Produktion nachwachsender Rohstoffe als mögliche Ausgleichs- und Ersatzmaßnahmen (ELKE): Phase III – Umsetzung praxisbasierter Feldmodellprojekte (Endbericht), Hochschule Trier – Umwelt-Campus Birkenfeld, Institut für angewandtes Stoffstrommanagement (IfaS), pp 149–162Google Scholar
  97. Reid WV, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dasgupta P, Dietz T, Duraiappah AK, Hassan R, Kasperson R, Leemans R, May RM, McMichael TA, Pingali P, Samper C, Scholes R, Watson RT, Zakri A, Shidong Z, Ash NJ, Bennett E, Kumar P, Lee MJ, Raudsepp-Hearne C, Simons H, Thonell J, Zurek MB (2005) Millennium ecosystem assessment: ecosystems and human well-being – synthesis. Island Press, Washington DC, p 155Google Scholar
  98. Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam J, Mosquera-Losada M (2009a) Agroforestry systems in Europe: productive, ecological and social perspectives. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Springer, Dordrecht, pp 43–65CrossRefGoogle Scholar
  99. Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) (2009b) Agroforestry in Europe – current status and future prospects. Springer, Dordrecht, p 450Google Scholar
  100. Ringler A, Roßmann D, Steidl I (1997) Landschaftspflegekonzept Bayern – Lebensraum Hecken und Feldgehölze. Bayrisches Staatsministerium für Landesentwicklung und Umweltfragen, Bayerische Akademie für Naturschutz und Landschaftspflege, München, Deutschland, p 523Google Scholar
  101. Robert M (2001) Soil carbon sequestration for improved land management. FAO, RomeGoogle Scholar
  102. Rodríguez JP, Beard TD Jr, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11(1):1–28CrossRefGoogle Scholar
  103. Röhle H, Hartmann KU, Steinke C (2010) Ertragskunde. In: Skodawessely C, Pretzsch J, Bemmann A (eds) Eigenverlag Technische Universität Dresden, pp 53–59Google Scholar
  104. Roy RN, Misra RV, Lesschen JP, Smaling EM (2003) Assessment of soil nutrient balance-approaches and methodologies FAO (Food Agricultural Organization of the United Nations), p 101Google Scholar
  105. Schimel D, Coleman D, Horton K (1985) Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36(3):201–214CrossRefGoogle Scholar
  106. Schinner F, Sonnleitner R (1996) Bodenökologie: Mikrobiologie und Bodenenzymatik Band I Grundlagen, Klima, Vegetation und Bodentyp. Springer, Berlin/Heidelberg/Germany, p 450CrossRefGoogle Scholar
  107. Scholten H (1988) Snow distribution on crop fields. Agric Ecosyst Environ 22–23:363–380CrossRefGoogle Scholar
  108. Scholz V, Hellebrand HJ, Grundmann P (2004) Produktion von nachwachsenden Energierohstoffen auf landwirtschaftlichen Flächen. KTBL, Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V., pp 176–181Google Scholar
  109. Schroeder P (1993) Agroforestry systems: integrated land use to store and conserve carbon. Clim Res 3(1–2):53–60CrossRefGoogle Scholar
  110. Schroth G (1995) Tree root characteristics as criteria for species selection and systems design in agroforestry. Agrofor Syst 30(1–2):125–143CrossRefGoogle Scholar
  111. Schroth G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43(1–3):5–34CrossRefGoogle Scholar
  112. Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3(2):147–166CrossRefGoogle Scholar
  113. Schulze J, Frank K, Priess JA, Meyer MA (2016) Assessing regional-scale impacts of short rotation coppices on ecosystem services by modeling land-use decisions. PLoS One 11(4):1–21CrossRefGoogle Scholar
  114. Singh HP, Batish DR, Kohli RK (1998) Effect of poplar (Populus deltoides) shelterbelt on the growth and yield of wheat in Punjab, India. Agrofor Syst 40(2):207–213CrossRefGoogle Scholar
  115. Ślązak A, Böhm C, Veste M (2013) Kohlenstoffspeicherung, Nährstoff- und Wasserverfügbarkeit. In: Wagener F, Böhmer J, Kuhn D, Sutterer N (eds) Entwicklung extensiver Landnutzungskonzepte für die Produktion nachwachsender Rohstoffe als mögliche Ausgleichs- und Ersatzmaßnahmen (ELKE): Phase III – Umsetzung praxisbasierter Feldmodellprojekte (Endbericht), Hochschule Trier – Umwelt-Campus Birkenfeld, Institut für angewandtes Stoffstrommanagement (IfaS), pp 130–149Google Scholar
  116. Smith J, Pearce BD, Wolfe MS (2012) Reconciling productivity with protection of the environment: is temperate agroforestry the answer? Renewable Agric Food Syst 28:80–92CrossRefGoogle Scholar
  117. Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74(1):65–105CrossRefGoogle Scholar
  118. Steppler HA, Nair PR (eds) (1987) Agroforestry – a decade of development. International Council for Research in Agroforestry (ICRAF), Nairobi, p 336Google Scholar
  119. Stetter U, Makeschin F (1997) Kohlenstoff- und Stickstoffdynamik vormals landwirtschaftlich genutzter Böden nach Erstaufforstung mit schnellwachsenden Baumarten. Mitteilgn Dtsch Bodenkundl Gesellsch 85(2):1047–1050Google Scholar
  120. Stone E, Kalisz P (1991) On the maximum extent of tree roots. For Ecol Manag 46(1):59–102CrossRefGoogle Scholar
  121. Sudmeyer RA, Scott PR (2002) Characterisation of a windbreak system on the south coast of Western Australia. 1. Microclimate and wind erosion. Aust J Exp Agric 42(6):703–715CrossRefGoogle Scholar
  122. Szczukowski S, Tworkowski J, Klasa A, Stolarski M (2002) Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinná Výroba 48(9):413–417Google Scholar
  123. Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161CrossRefGoogle Scholar
  124. Tsonkova P, Böhm C, Quinkenstein A, Freese D (2012) Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agrofor Syst 85:133–152CrossRefGoogle Scholar
  125. Tsonkova P, Quinkenstein A, Böhm C, Freese D, Schaller E (2014) Ecosystem services assessment tool for agroforestry (ESAT-A): an approach to assess selected ecosystem services provided by alley cropping systems. Ecol Indic 45:285–299CrossRefGoogle Scholar
  126. Tsonkova P, Böhm C, Quinkenstein A, Freese D (2015) Application of partial order ranking to identify enhancement potentials for the provision of selected ecosystem services by different land use strategies. Agric Syst 135:112–121CrossRefGoogle Scholar
  127. Updegraff KL, Zak DR, Grigal DF (1990) The nitrogen budget of a hybrid poplar plantation in Minnesota. Can J For Res 20(11):1818–1822CrossRefGoogle Scholar
  128. van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll L, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: a parameter-sparse process-based dynamic model for predicting resource capture, growth and production in agroforestry systems. Ecol Eng 29(4):419–433CrossRefGoogle Scholar
  129. Vooren LV, Reubens B, Broekx S, Pardon P, Reheul D, van Winsen F, Verheyen K, Wauters E, Lauwers L (2016) Greening and producing: an economic assessment framework for integrating trees in cropping systems. Agric Syst 148:44–57CrossRefGoogle Scholar
  130. Walle IV (2007) Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems. PhD Thesis. Ghent University, Ghent, Belgium, p 244Google Scholar
  131. Wessolek G, Duijnisveld WHM, Trinks S (2004) Ein neues Verfahren zur Berechnung der Sickerwasserrate aus dem Boden: das TUB-BGR-Verfahren. In: Bronstert A, Thieken A, Merz B, Rohde M, Menzel L (eds) Wasser- und Stofftransport in heterogenen Einzugsgebieten: Beiträge zum Tag der Hydrologie am 22./23. März 2004 in Potsdam (Germany), Hydrologische Wissenschaften – Fachgemeinschaft in der ATV-DVWKKleeberg, pp 135–145Google Scholar
  132. Wessolek G, Kaupenjohann M, Dominik P, Ilg K, Schmitt A, Zeitz J, Gahre F, Schulz E, Ellerbrock R, Utermann J, Düwel O, Siebner C (2008) Ermittlung von Optimalgehalten an organischer Substanz landwirtschaftlich genutzter Böden nach § 17(2) Nr. 7 BBodSchG. Umweltbundesamt, p 211Google Scholar
  133. Yocum WW (1937) Root development of young delicious apple trees as affected by soils and by cultural treatments. Univ Nebraska Agric Exp stat. Res Bull 95:1–55Google Scholar
  134. Young A (1990) Agroforestry for soil conservation. CAB International, Wallingford, p 317Google Scholar
  135. Zech W, Ziegler F, Kögel-Knabner I, Haumaier L (1992) Humic substances distribution and transformation in forest soils. Sci Total Environ 117:155–174CrossRefGoogle Scholar
  136. Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ansgar Quinkenstein
    • 1
  • Penka Tsonkova
    • 1
  • Dirk Freese
    • 1
  1. 1.Brandenburg University of TechnologyCottbusGermany

Personalised recommendations