Skip to main content

Development of Early Prediction Model for Epileptic Seizures

  • Conference paper
  • First Online:
Data Science and Big Data Analytics

Abstract

Epilepsy is the neurological disorder of brain electrical system causes the seizure because of that the brain and body behave abnormally (Yadollahpour, Jalilifar, Biomed Pharmacol J 7(1):153–162, 2014) [1]. Epilepsy is the result of recurrent seizure, i.e., if the person has single seizure in their whole lives then that person is not affected by epilepsy but if that person has more than two seizures in their lives then that person is affected by Epilepsy. Near about 0.8–1% of population all over the world is affected by an epilepsy, epilepsy is not able to cure but able to controlled by using anti epileptic medicine or by performing resective surgery then also in 25% epileptic patients no present therapy is used to controlled the epilepsy. Epilepsy is unpredictable in nature so it increases the risk of end dangerous accident when person work with heavy machineries like driving a car, cooking or swimming, again a patient always have fear of next seizure it really affect on their daily lives so to minimize the risk and to improve the quality of life of such patient it is necessary to predict the epilepsy before its onset. In the present study by using 21 patients EEG database which consist of 80 seizure, learn the 336 predictive model using four different classifier, i.e., ANN, KNN, MC-SVM using 1-against-1 approach and MC-SVM using 1-against-all approach and make possible to predict epilepsy 25 min before onset with the maximum average accuracy 98.19% and sensitivity 98.97% and predict 30 min before onset with the average maximum accuracy 98.04% and sensitivity of 98.85%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yadollahpour A, Jalilifar M (2014) Seizure prediction methods: a review of the current predicting techniques. Biomed Pharmacol J 7(1):153–162

    Google Scholar 

  2. Fullick A (2011) Edexcel IGCSE biology revision guide. Pearson Education, p 40. ISBN: 9780435046767

    Google Scholar 

  3. http://www.who.int/mental_health/media/en/639.pdf

  4. Adelson PD, Nemoto E, Scheuer M, Painter M, Morgan J et al (1999) Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report. Epilepsia 40:1484–1489. https://doi.org/10.1111/j.1528-1157.1999.tb02030.x

  5. Moghim N, Corne DW (2014) Predicting epileptic seizures in advance. PLoS ONE 9(6):e99334. https://doi.org/10.1371/journal.pone.0099334

    Article  Google Scholar 

  6. Epilepsy.uni-freiburg.de (2007) EEG database—seizure prediction project

    Google Scholar 

  7. https://in.mathworks.com/matlabcentral/answers/216489-why-we-need-to-normalize-the-Data-what-is-normalize-data?requestedDomain=www.mathworks.com

  8. De Clercq W, Lemmerling P, Van Huffel S, Van Paesschen W (2003) Anticipation of epileptic seizures from standard EEG recordings. The Lancet 361:971–971. https://doi.org/10.1016/s0140-6736(03)12780-8

  9. Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S et al (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4:1173–1176. https://doi.org/10.1038/2667

    Article  Google Scholar 

  10. Costa RP, Oliveira P, Rodrigues G, Leitão B, Dourado A (2008) Epileptic seizure classification using neural networks with 14 features, pp 281–288

    Google Scholar 

  11. Litt B, Esteller R, Echauz J, D’Alessandro M, Shor R et al (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30:51–64. https://doi.org/10.1016/s0896-6273(01)00262-8

  12. Khalil M, Al Hage J, Khalil K (2015) Feature selection algorithm used to classify faults in turbine bearings. Int J Comput Sci Appl 4(1 April 2015) 12324‐7037/15/01 001‐08 https://doi.org/10.12783/ijcsa.2015.0401.01

  13. Ladha L, Deepa T (2011) Feature selection methods and algorithms. Int J Adv Trends Comput Sci Eng 3(5):1787–1797. ISSN: 0975-3397

    Google Scholar 

  14. Rathore SS, Gupta A (2014) A comparative study of feature-ranking and feature-subset selection technique for improved fault prediction. In: Conference Paper, · Feb 2014. https://doi.org/10.1145/2590748.2590755

  15. Kononenko I, Šimec E, Robnik-Šikonja M (1997) Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl Intell 7(1):39–55

    Google Scholar 

  16. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69

    Google Scholar 

  17. Yin C, Feng L, Ma L, Yin Z, Wang J (2015) A feature selection algorithm based on Hoeffding inequality and mutual information. Int J Signal Process Image Process Pattern Recognit 8(11):433–444. http://dx.doi.org/10.14257/ijsip.2015.8.11.39

  18. Fleuret F (2004) Fast binary feature selection with conditional mutual information. Mach Learn Res 5:1531–1555

    MathSciNet  MATH  Google Scholar 

  19. Chandrashekar Girish, Sahin Ferat (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28

    Article  Google Scholar 

  20. Haykin S (1999) Neural networks a comprehensive foundation, 2nd edn. Prentice Hall Inc., Upper Saddle River, NJ, USA

    MATH  Google Scholar 

  21. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  22. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27

    Article  Google Scholar 

  23. Devroye L (1981) On the asymptotic probability of error in nonparametric discrimination. Ann Statist 9(1320):1327

    MathSciNet  MATH  Google Scholar 

  24. Gou J, Du L, Zhang Y, Xiong T (2012) A new distance-weighted k-nearest neighbor classifier. J Inf Comput Sci 9(6):1429–1436

    Google Scholar 

  25. Gil-Garcia R, Pons-Porrata A (2006) A new nearest neighbor rule for text categorization. Lecture notes in computer science, vol 4225. Springer, New York, pp 814–823

    Google Scholar 

  26. Knerr S, Personnaz L, Dreyfus G (1990) Single-layer learning revisited: a stepwise procedure for building and training a neural network. Springer, Berlin, Heidelberg, pp 41–50. https://doi.org/10.1007/978-3-642-76153-9_5

  27. Krebel UHG (1999) Pairwise classification and support vector machines. MIT Press. 14 pp

    Google Scholar 

  28. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2:27

    Google Scholar 

  29. LIBSVM (2013) LIBSVM—A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed 18 May 2014

  30. Oladunni OO, Trafalis TB (2006) A pair wise reduced kernel-based multi-classification Tikhonov regularization machine. In: Proceedings of the international joint conference on neural networks (IJCNN’06), Vancouver, BC, Canada, July 2006, on CD-ROM. IEEE Press, pp 130–137

    Google Scholar 

  31. Chamasemani FF, Singh YP (2011) Multi-class support vector machine (SVM) classifiers—an application in hypothyroid detection and classification. In: The 2011 sixth international conference on bio-inspired computing, pp 351–356. https://doi.org/10.1109/bic-ta.2011.51

  32. Milgram J, Cheriet M, Sabourin R (2006) “One against one” or “one against all”: which one is better for handwriting recognition with SVMs? Guy Lorette. In: Tenth international workshop on frontiers in handwriting recognition, Oct 2006, La Baule (France), Suvisoft

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjum Shaikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaikh, A., Dhopeshwarkar, M. (2019). Development of Early Prediction Model for Epileptic Seizures. In: Mishra, D., Yang, XS., Unal, A. (eds) Data Science and Big Data Analytics. Lecture Notes on Data Engineering and Communications Technologies, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-10-7641-1_11

Download citation

Publish with us

Policies and ethics