Skip to main content

Emotional State Recognition with EEG Signals Using Subject Independent Approach

  • Conference paper
  • First Online:
Data Science and Big Data Analytics

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 16))

Abstract

EEG signals vary from human to human and hence it is very difficult to create a subject independent emotion recognition system. Even though subject dependent methodologies could achieve good emotion recognition accuracy, the subject-independent approaches are still in infancy. EEG is reliable than facial expression or speech signal to recognize emotions, since it can not be fake. In this paper, a Multilayer Perceptron neural network based subject-independent emotion recognition system is proposed. Performance evaluation of the proposed system, on the benchmark DEAP dataset shows good accuracy compared to the state of the art subject independent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul S, Mazumder A, Ghosh P, Tibarewala DN, Vimalarani G (2015) EEG based emotion recognition system using MFDFA as feature extractor. In: International conference on robotics, automation, control and embedded systems (RACE) IEEE, pp 1–5

    Google Scholar 

  2. Lahane P, Sangaiah AK (2015) An approach to EEG based emotion recognition and classification using kernel density estimation. In: International conference on intelligent computing, communication and convergence (ICCC-2015), Odisha, India. Procedia Comput Sci 48:574–581

    Google Scholar 

  3. Singh M, Sing M, Gangwar S (2013) Emotion recognition using electroencephalography (EEG): a review. IJITKM 7(1):1–5

    Google Scholar 

  4. Soleymani M, Asghari-Esfeden S, Pantic M, Fu Y (2014) Continuous emotion detection using EEG signals and facial expressions. In: IEEE international conference on multimedia and expo (ICME), pp 1–6

    Google Scholar 

  5. Abhang P, Rao S, Gawali BW, Rokade P (2011) Emotion recognition using speech and EEG signal—a review. Int J Comput Appl 15(3):0975–8887

    Google Scholar 

  6. Chen J, Hu B, Moore P, Zhang X, Ma X (2015) Electroencephalogram based emotion assessment system using ontology and data mining technique. Appl Soft Comput 30:663–674

    Article  Google Scholar 

  7. Gupta R, Laghari KR, Falk TH (2016) Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing 174:875–884

    Article  Google Scholar 

  8. Atkinson J, Campos D (2016) Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst Appl 47:35–41

    Article  Google Scholar 

  9. Bozhkov L, Georgieva P, Santos I, Pereira A, Silva C (2015) EEG-based subject independent affective computing models. In: INNS conference on big data. Procedia Comput Sci 53:375–382

    Google Scholar 

  10. Lan Z, Sourina O, Wang L, Liu Y (2016) Real-time EEG-based emotion monitoring using stable features. Vis Comput 32(3):347–358

    Article  Google Scholar 

  11. Purnamasari PD, Ratna AAP, Kusumoputro B (2017) Development of filtered bispectrum for EEG signal feature extraction in automatic emotion recognition using artificial neural networks. Algorithms 10(2):63

    Article  MathSciNet  Google Scholar 

  12. Gómez A, Quintero L, López N, Castro J, Villa L, Mejía G (2017) An approach to emotion recognition in single-channel EEG signals using stationary wavelet transform. In: VII Latin American congress on biomedical engineering CLAIB 2016, Bucaramanga, Santander, Colombia. Springer, Singapore, pp 654–657

    Google Scholar 

  13. Zhuang N, Zeng Y, Tong L, Zhang C, Zhang H, Yan B (2017) Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed Res Int

    Google Scholar 

  14. Yohanes RE, Ser W, Huang GB (2012) Discrete wavelet transform coefficients for emotion recognition from EEG signals. In: 2012 annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 2251–2254

    Google Scholar 

  15. Nakate A, Bahirgonde PD (2015) Feature extraction of EEG signal using wavelet transform. Int J Comput Appl 124(2):0975–8887

    Google Scholar 

  16. Koelstra S, Muhl C, Soleymani M, Lee J, Yazdani A, Ebrahimi T, Pun T, NIjhilt A, Patras I (2012) DEAP: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31

    Google Scholar 

  17. Russell JA (1980) A circumplex model of affect. J Pers Soc Psychol 39(6):1161–1178

    Article  Google Scholar 

  18. Bradley MM, Lang PJ (1994) Measuring emotion: the self-assessment manikin and the semantic differential. J Behav Ther Exp Psychiatry 25(1):49–59

    Article  Google Scholar 

  19. DEAP database description. https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html

  20. Zhang J, Chen M, Zhao S, Hu S, Shi Z, Cao Y (2016) ReliefF-based EEG sensor selection methods for emotion recognition. Sensors 16(10):1558

    Article  Google Scholar 

  21. Jirayucharoensak S, Pan-Ngum S, Israsena P (2014) EEG-based emotion recognition using deep learning network with principal component based covariate shift adaption. World Sci J 10 pp. Article ID: 627892

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, P., Seeja, K.R. (2019). Emotional State Recognition with EEG Signals Using Subject Independent Approach. In: Mishra, D., Yang, XS., Unal, A. (eds) Data Science and Big Data Analytics. Lecture Notes on Data Engineering and Communications Technologies, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-10-7641-1_10

Download citation

Publish with us

Policies and ethics