Skip to main content

Solid Oxide Fuel Cells: Techniques and Characterization

  • Chapter
  • First Online:
Introduction to Fuel Cells
  • 2627 Accesses

Abstract

Electrochemical techniques which can be used in SOFCs are limited due to the high operating temperature (600–1000 °C) and solid-state nature of the electrode and electrolytes. Thus it is important to have a proper design and cell configuration to ensure the accuracy of the polarization performance measurement of SOFCs. This Chapter will start with the test station design and electrode arrangement. The inrinsic realtionship between the position of the reference electrodes, equipotential line and polarization evaluation of electrode and electrolyte reactions will be discussed. The most common electrochemical techniques used in SOFCs such as electrochemical impedance spectroscopy and galvanostatic current interruption will be introduced.   

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao L, Zhang J, Becker T, Jiang SP (2014) Raman spectroscopy study of chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3 cathodes of solid oxide fuel cells. J Electrochem Soc 161:F687–F693

    Article  Google Scholar 

  2. Zhao L, Drennan J, Kong C, Amarasinghe S, Jiang SP (2014) Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. J Mater Chem A 2(29):11114–11123

    Google Scholar 

  3. Chen K, Ai N, Jiang SP (2013) Chemical compatibility between boron oxides and electrolyte and cathode materials of solid oxide fuel cells. Fuel Cells 13(6):1101–1108

    Article  Google Scholar 

  4. Wang CC, Chen KF, Jiang SP (2014) Sulfur Deposition and Poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode materials of solid oxide fuel cells. J Electrochem Soc 161(12):F1133–F1139

    Google Scholar 

  5. Jiang SP, Zhang JP, Foger K (2001) Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells—III. Effect of air flow. J Electrochem Soc 148(7):C447–C455

    Google Scholar 

  6. Chen K, Liu S-S, Guagliardo P, Kilburn MR, Koyama M, Jiang SP (2015) A fundamental study of boron deposition and poisoning of La0.8Sr0.2MnO3 cathode of solid oxide fuel cells under accelerated conditions. J Electrochem Soc 162(12):F1282–F12991

    Google Scholar 

  7. Jiang SP, Chen XB (2014) Chromium deposition and poisoning of cathodes of solid oxide fuel cells—a review. Int J Hydrog Energy 39(1):505–531

    Article  MathSciNet  Google Scholar 

  8. Jiang SP, Badwal SPS (1997) Hydrogen oxidation at the nickel and platinum electrodes on yttria-tetragonal zirconia electrolyte. J Electrochem Soc 144(11):3777–3784

    Article  Google Scholar 

  9. Jiang SP (2002) A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics 146(1–2):1–22

    Article  Google Scholar 

  10. Ostergard MJL, Clausen C, Bagger C, Mogensen M (1995) Manganite-zirconia composite cathodes for SOFC—influence of structure and composition. Electrochim Acta 40(12):1971–1981

    Article  Google Scholar 

  11. Pan W, He S, Chen K, Ai N, Lü Z, Jiang SP (2020) Verification and applicability of symmetric cell configuration for mechanistic study of oxygen electrode reactions of solid oxide cells. Solid State Ionics 357:115457

    Google Scholar 

  12. Zhao F, Virkar AV (2005) Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources 141(1):79–95

    Google Scholar 

  13. Leng YJ, Chan SH, Khor KA, Jiang SP (2004) Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. Int J Hydrog Energy 29(10):1025–1033

    Google Scholar 

  14. Jiang SP (2003) Issues on development of (La, Sr)MnO3 cathode for solid oxide fuel cells. J Power Sources 124(2):390–402

    Article  Google Scholar 

  15. Jiang SP, Love JG, Apateanu L (2003) Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. Solid State Ionics 160(1–2):15–26

    Article  Google Scholar 

  16. Polverino P, Gallo M, Pianese C (2021) Development of mathematical transfer functions correlating solid oxide fuel cell degradation to operating conditions for Accelerated Stress Test protocols design. J Power Sources 491:229–521

    Google Scholar 

  17. Jiang SP (2001) Resistance measurement in solid oxide fuel cells. J Electrochem Soc 148(8):A887–A897

    Article  Google Scholar 

  18. Jiang SP (2017) Placement of reference electrode, electrolyte thickness and three-electrode cell configuration in solid oxide fuel cells: a brief review and update on experimental approach. J Electrochem Soc 164(7):F834–F844

    Article  Google Scholar 

  19. Jiang SP, Ramprakash Y (1999) H2 oxidation on Ni/Y-TZP cermet electrodes—a comparison of electrode behaviour by GCI and EIS techniques. Solid State Ionics 122(1–4):211–222

    Article  Google Scholar 

  20. Jiang SP, Love JG, Ramprakash Y (2002) Electrode behaviour at (La, Sr)MnO3/Y2O3-ZrO2 interface by electrochemical impedance spectroscopyy. J Power Sources 110(1):201–208

    Article  Google Scholar 

  21. Jiang SP (2004) Cell configuration for performance evaluation in planar solid oxide fuel cells. J Appl Electrochem 34(10):1045–1055

    Article  Google Scholar 

  22. Jiang SP (2008) Dependence of cell resistivity on electrolyte thickness in solid oxide fuel cells. J Power Sources 183(2):595–599

    Article  Google Scholar 

  23. Huang QA, Hui R, Wang BW, Zhang JJ (2007) A review of AC impedance modeling and validation in SOFC diagnosis. Electrochim Acta 52(28):8144–8164

    Article  Google Scholar 

  24. Jiang SP, Zhang JP, Foger K (2000) Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells—II. Effect on O2 reduction reaction. J Electrochem Soc 147 (9):3195–3205.

    Google Scholar 

  25. Jiang SP, Badwal SPS (1999) An electrode kinetics study of H2 oxidation on Ni/Y2O3-ZrO2 cermet electrode of the solid oxide fuel cell. Solid State Ionics 123(1–4):209–224

    Article  Google Scholar 

  26. Vanhassel BA, Boukamp BA, Burggraaf AJ (1991) Electrode polarization at the Au, O2 yttria stabilized zirconia interface. 2. Electrochemical measurements and analysis. Solid State Ionics 48(1–2):155–171

    Google Scholar 

  27. Chen KF, Ai N, Jiang SP (2016) Origin of low frequency inductive impedance loops of O2 reduction reaction of solid oxide fuel cells. Solid State Ionics 291:33–41

    Article  Google Scholar 

  28. Jiang SP (2001) Use of gaseous Cr species to diagnose surface and bulk process for O2 reduction in solid oxide fuel cells. J Appl Electrochem 31(2):181–192

    Article  Google Scholar 

  29. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Influence of constituent metal-cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48(3–4):207–212

    Article  Google Scholar 

  30. Jiang SP, Liu L, Ong KP, Wu P, Li J, Pu J (2008) Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. J Power Sources 176:82–89

    Article  Google Scholar 

  31. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51(2):151–210

    Article  Google Scholar 

  32. Leng YJ, Chan SH, Khor KA, Jiang SP, Cheang P (2003) Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. J Power Sources 117(1–2):26–34

    Article  Google Scholar 

  33. Chater RJ, Carter S, Kilner JA, Steele BCH (1992) Development of a novel sims technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity. Solid State Ionics 53–6:859–867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Ping Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, S.P., Li, Q. (2022). Solid Oxide Fuel Cells: Techniques and Characterization. In: Introduction to Fuel Cells. Springer, Singapore. https://doi.org/10.1007/978-981-10-7626-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7626-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7625-1

  • Online ISBN: 978-981-10-7626-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics