Skip to main content

Hybrid Sensing and Behavior-Aware in Pedestrian Hazard Detection

  • 440 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 474)

Abstract

The advances in multiple types of sensing technology, wireless communication, and context-aware services increase interest in the design and development of pedestrian behavior for hazard detection. This paper focuses on research of the hybrid sensing fusion approach that identifies behavior activities and provides behavior-aware alerts for safety to pedestrians. Hybrid sensing techniques use to integrate data gathered from several sensors and increase the reliability of the algorithm for identifying various activities. The main purpose of this paper is to present the overview of hybrid sensing and behavior-aware to apply for the pedestrian hazard detection.

Keywords

  • Hybrid sensing
  • Sensor data collection
  • Sensor fusion
  • Behavior aware

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7605-3_178
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   369.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-7605-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   469.00
Price excludes VAT (USA)
Hardcover Book
USD   469.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Tong, L., Song, Q., Ge, Y., Liu, M.: HMM-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sens. J. 13(5), 1849–1856 (2013)

    CrossRef  Google Scholar 

  2. Aziza, O., Parkc, E.J., Morid, G., Robinovitch, S.N.: Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers. Gait Posture 39, 506–512 (2014)

    CrossRef  Google Scholar 

  3. Bogomolov, A., Lepri, B., Pianesi, F.: Happiness recognition from mobile phone data. In: BioMedCom 2013 (2013)

    Google Scholar 

  4. LiKamWa, R., Liu, Y., Lane, N.D., Zhong, L.: Can your smartphone infer your mood? In: PhoneSense Workshop (2011)

    Google Scholar 

  5. Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Pers. Ubiquitous Comput. 17(3), 433–450 (2013)

    CrossRef  Google Scholar 

  6. Singh, V.K., Freeman, L., Lepri, B., Pentland, A.: Predicting spending behavior using socio-mobile features. In: BioMedCom 2013 (2013)

    Google Scholar 

  7. Faetti, T., Paradiso, R.: A novel wearable system for elderly monitoring. Adv. Sci. Technol. 85, 17–22 (2013)

    CrossRef  Google Scholar 

  8. Pierleoni, P., Pernini, L., Belli, A., Palma, L.: An android-based heart monitoring system for the elderly and for patients with heart disease. Int. J. Telemed. Appl. 2014, 11 (2014)

    Google Scholar 

  9. Zhou, P., Zheng, Y., Li, M.: How long to wait? Predicting bus arrival time with mobile phone based participatory sensing. In: MobiSys 2012 Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (2012)

    Google Scholar 

  10. Hoang, T., Nguyen, T., Luong, C., Do, S., Deokjai, C.: Adaptive cross-device gait recognition using a mobile accelerometer. J. Inf. Process. Syst. 9(2), 333 (2013)

    CrossRef  Google Scholar 

  11. Hall, L., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE 85, 6–23 (1997)

    CrossRef  Google Scholar 

  12. Pohl, C., Van Genderen, J.L.: Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19, 823–854 (1998)

    CrossRef  Google Scholar 

  13. Ayu, M., Mantoro, T., Fariadi, A., Basamh, S.: Recognizing user activity based on accelerometer data from a mobile phone. In: 2011 IEEE Symposium on Computers & Informatics (ISCI), Kuala Lumpur (2011)

    Google Scholar 

  14. Galvan-Tejada, C., Carrasco-Jimenez, J., Branea, R.: Location identification using a magnetic-field-based FFT signature. In: The 4th International Conference on Ambient Systems, Networks and Technologies (2013)

    Google Scholar 

  15. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2179–2195 (2009)

    CrossRef  Google Scholar 

  16. Geronimo, D., Lopez, A.M., Sappa, A.D., Graf, T.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)

    CrossRef  Google Scholar 

  17. https://developer.android.com/guide/topics/sensors/sensors_overview.html

Download references

Acknowledgments

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (2017-0-00336, Platform Development of Multi-log based Multi-Modal Data Convergence Analysis and Situational Response). This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2017-2016-0-00311) supervised by the IITP(Institute for Information & communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongIk Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kim, S., Yoon, Y. (2018). Hybrid Sensing and Behavior-Aware in Pedestrian Hazard Detection. In: Park, J., Loia, V., Yi, G., Sung, Y. (eds) Advances in Computer Science and Ubiquitous Computing. CUTE CSA 2017 2017. Lecture Notes in Electrical Engineering, vol 474. Springer, Singapore. https://doi.org/10.1007/978-981-10-7605-3_178

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7605-3_178

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7604-6

  • Online ISBN: 978-981-10-7605-3

  • eBook Packages: EngineeringEngineering (R0)