Skip to main content

The Approximate Solution for Multi-term the Fractional Order Initial Value Problem Using Collocation Method Based on Shifted Chebyshev Polynomials of the First Kind

  • Conference paper
  • First Online:
Information Technology and Applied Mathematics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 699))

Abstract

Nowadays, to survive and promote the market competition, multi-item business strategy is more effective for any production/manufacturing sector. Many physical problems can be best model by using fractional differential equation (FDE). In this paper, we propose the approximate scheme to solve multi-term fractional order initial value problem. The proposed scheme is based on collocation method and shifted Chebyshev polynomials (SCP). The fractional derivatives are utilized in the Caputo sense. The fractional order initial value problem can be reduced to a system of algebraic equations by utilizing the properties of SCP, which is solved numerically. The collocation point is chosen in such a way as to attain stability and convergence. The main theme of the proposal is to centralize the upper bound of the derived formula and convergence analysis. The numerical examples are achieved good accuracy using proposed scheme even by using small number of shifted Chebyshev polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers (2006)

    Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Ortigueira, M.: Introduction to fraction linear systems. Part 2: discrete-time case. IEE Proc. Vis. Image Signal Proc. 147, 71–78 (2000)

    Article  Google Scholar 

  4. Deng, J., Ma, L.: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 23(6), 676–680 (2010)

    Article  MathSciNet  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  6. Abdulaziz, O., Hashim, I., Momani, S.: Application of homotopy-perturbation method to fractional IVPs. J. Comput. Appl. Math. 216(2), 574–584 (2008)

    Article  MathSciNet  Google Scholar 

  7. Yang, S., Xiao, A., Su, H.: Convergence of the variational iteration method for solving multi-order fractional differential equations. Comput. Math. Appl. 60(10), 2871–2879 (2010)

    Article  MathSciNet  Google Scholar 

  8. Ray, S.S., Bera, R.K.: Solution of an extraordinary differential equation by adomian decomposition method. J. Appl. Math. 2004(4), 331–338 (2004)

    Article  MathSciNet  Google Scholar 

  9. El-Sayed, A.M., El-Kalla, I.L., Ziada, E.A.: Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations. Appl. Numer. Math. 60(8), 788–797 (2010)

    Article  MathSciNet  Google Scholar 

  10. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34(3), 593–600 (2010)

    Article  MathSciNet  Google Scholar 

  11. Jafari, H., Das, S., Tajadodi, H.: Solving a multi-order fractional differential equation using homotopy analysis method. J. King Saud Univ. Sci. 23(2), 151–155 (2011)

    Article  Google Scholar 

  12. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29(1), 3–22 (2002)

    Article  MathSciNet  Google Scholar 

  13. Kumer, P., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Signal Proc. 86(10), 2602–2610 (2006)

    Article  Google Scholar 

  14. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    Article  MathSciNet  Google Scholar 

  15. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (2012)

    MATH  Google Scholar 

  16. Doha, E.H.: Bhrawy AH (2008) Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58(8), 1224–1244 (1988)

    Article  Google Scholar 

  17. Doha, E.H., Bhrawy, A.H.: Jacobi spectral-Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numer. Methods Partial Differ. Equ. 25(3), 712–739 (2009)

    Article  MathSciNet  Google Scholar 

  18. Doha, E.H., Bhrawy, A.H., Hafez, R.M.: A Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth-order differential equations. Math. Comput. Model. 53(9), 1820–1832 (2011)

    Article  MathSciNet  Google Scholar 

  19. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35(12), 5662–5672 (2011). http://dx.doi.org/10.1016/j.apm/2011.05.011

    Article  MathSciNet  Google Scholar 

  20. Doha, E.H., Bhrawy, A.H., Ezzeldeen, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35(12), 5662–5672 (2011)

    Article  MathSciNet  Google Scholar 

  21. Bhrawy, A.H., Alofi, A.S., Ezzeldeen, S.S.: A quadrature tau method for variable coefficients fractional differential equations. Appl. Math. Lett. 24(12), 2146–2152 (2011)

    Article  MathSciNet  Google Scholar 

  22. Sweilam, N.H., Khader, M.M., Mahdy, A.M.S.: Numerical studies for fractional-order logistic differential equation with two different delays. J. Appl. Math. (2012)

    Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010)

    Google Scholar 

  25. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Boca Raton. Chapman and Hall, New York, NY, CRC (2003)

    MATH  Google Scholar 

  26. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)

    Article  MathSciNet  Google Scholar 

  27. Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)

    Article  MathSciNet  Google Scholar 

  28. Bhrawy, A.H., Tharwat, M.M., Yildirim, A.: A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations. Appl. Math. Model. 37(6), 4245–4252 (2013)

    Article  MathSciNet  Google Scholar 

  29. Mdallal, Q.M., Syam, M.I., Anwar, M.N.: A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3814–3822 (2010)

    Article  MathSciNet  Google Scholar 

  30. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62(5), 2364–2673 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Department of Applied Mathematics & Humanities, S.V. National Institute of Technology, Surat, India, for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Saw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saw, V., Kumar, S. (2019). The Approximate Solution for Multi-term the Fractional Order Initial Value Problem Using Collocation Method Based on Shifted Chebyshev Polynomials of the First Kind. In: Chandra, P., Giri, D., Li, F., Kar, S., Jana, D. (eds) Information Technology and Applied Mathematics. Advances in Intelligent Systems and Computing, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-10-7590-2_4

Download citation

Publish with us

Policies and ethics