Skip to main content

Urea Fertilizer: The Global Challenges and Their Impact to Our Sustainability

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The world population will increase up to approximately 9.7 billion in 2050. This calls for an attention due to the potential global warming which then leads to an extreme climate change. Svante August Arrhenius has addressed this issue and had predicted global warming in 1896. One of the gases that contributes toward the global warming is N2O which is due to the fertilizer effect, mainly urea. The production of urea by using conventional fertilizer plant has its impact on environment and certainly economy. The production of the fertilizers has great impact on the profitability due to its greenhouse gas intensive nature and climate policies. It was found that 1 ton of N2O is equivalent to 298 tons of CO2, and it has an atmospheric lifetime of 110 years. Nitrous oxide and nitric oxide emission have been increased steadily which ultimately increases the global warming potential. Considering the adverse effects of conventional fertilizers, the Green Urea is proposed as new nitrogen-based enhanced efficiency fertilizer (EEF) production and utilization, where a novel integrated ammonia–urea process and product was proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arrhenius, S. (1986). On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science, 41(270), 237–279.

    Google Scholar 

  2. Arrhenius, S. Ueber den Einfluss des atmosphärischen Kohlensäuregehalts auf die Temperatur der Erdoberfläche.

    Google Scholar 

  3. U. Nations. (1998). Kyoto protocol to the United Nations framework kyoto protocol to the United Nations framework. Review of European Community and International Environmental Law, 7, 214–217.

    Article  Google Scholar 

  4. Panel, I., & Climate, O. N. (1997). Intergovernmental Panel on Climate Change Ipcc/Oecd/Iea Programme on National Greenhouse Gas Inventories Expert Group Meeting on Methods for the Assessment of Inventory Quality (co-sponsored by CKO/CCB), Bilthoven, The Netherlands 5–7 November 1997.

    Google Scholar 

  5. IPCC. (2007). Climate change 2007: the physical science basis. Intergovernmental Panel on Climate Change, 446(7137), 727–728.

    Google Scholar 

  6. IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

    Google Scholar 

  7. Ayoub, A. T. (1999). Fertilizers and the environment. Nutrient Cycling in Agroecosystems, 55(2), 117–121.

    Article  Google Scholar 

  8. United Nations, Department of Economic and Social Affairs, Population Division. (2017). World Population Prospects: The 2017 Revision. New York: United Nations.

    Google Scholar 

  9. Potash, USGS Mineral Commodity Summary 2012.

    Google Scholar 

  10. Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207–228.

    Article  Google Scholar 

  11. Steffan, J. J., Brevik, E. C., Burgess, L. C., & Cerdà, A. (2017). The effect of soil on human health: An overview. European Journal of Soil Science.

    Google Scholar 

  12. Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., & Liu, L. (2012). Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7671–7675.

    Article  Google Scholar 

  13. Buyanovsky, G. A., & Wagner, G. H. (1998). Changing role of cultivated land in the global carbon cycle. Biology and Fertility of Soils, 27(3), 242–245.

    Article  Google Scholar 

  14. Denman, K., Ciais, P., Cox, P., Dickinson, R., Hauglustaine, D., Heinze, C., et al. (2007). Couplings Between Changes in the Climate System and Biogeochemistry (p. 119).

    Google Scholar 

  15. Wofsy, S. C., Zhang, X., Qin, D., Manning, M., Chen, Z., Marquis, M., & Averyt, K. B. (2007) Couplings between changes in the climate system and biogeochemistry. Climate Change 2007The Physical Science Basis, 21(7), 499–587.

    Google Scholar 

  16. Fertilizers Europe. (2013). EU fertilizer market. Key graphs.

    Google Scholar 

  17. E. Fertilizers. (2013). Closing the loop, pp. 1–7.

    Google Scholar 

  18. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., et al. (2003). The nitrogen cascade. BioScience, 53(4), 341.

    Article  Google Scholar 

  19. Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., et al. (1997). Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems, 49, 221–228.

    Article  Google Scholar 

  20. Davidson, E. A., Nifong, R. L., Ferguson, R. B., Palm, C., Osmond, D. L., & Baron, J. S. (2016). Nutrients in the nexus. Journal of Environmental Studies and Sciences, 6(1), 25–38.

    Article  Google Scholar 

  21. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636–639.

    Article  Google Scholar 

  22. Stork, M., & Bourgault, C. (2015). Fertilizers and Climate Change—Looking to 2050 (pp. 1–24).

    Google Scholar 

  23. Nash, M., & Neale, B. (2013). Fertilizer Europe (Vol. 23, no. 11, p. 13).

    Google Scholar 

  24. Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., et al. (2012). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2(6), 410–416.

    Article  Google Scholar 

  25. Scheer, C., Wassmann, R., Butterbach-Bahl, K., Lamers, J. P. A., & Martius, C. (2009). The relationship between N2O, NO, and N2 fluxes from fertilized and irrigated dryland soils of the Aral Sea Basin, Uzbekistan. Plant and Soil, 314(1–2), 273–283.

    Article  Google Scholar 

  26. Green House Protocol. (2015). Global warming potential values (AR5). Greenhouse Gas Protocol, 2014(1995), 2–5.

    Google Scholar 

  27. Le Treut, H., et al. (2007). Historical overview of climate change. In: S. Solomon, S, & Qin, D., et al. (Eds.), Climate change 2007: the physical science basis. Cambridge: Cambridge University Press (pp. 93–127).

    Google Scholar 

  28. Bockman, O. C., & Olfs, H. W. (1998). Fertilizers, agronomy, and NO. Nutrient Cycling in Agroecosystems, 52(2/3), 165–170. Dordrecht.

    Google Scholar 

  29. Signor, D., et al. (2013). N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, 8(1), 1–9. Bristol.

    Google Scholar 

  30. Snyder, C. S., et al. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133(3–4), 247–266. Amsterdam.

    Google Scholar 

  31. Akiyama, H., Tsuruta, H., & Watanabe, T. (2000). N2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere: Global Change Science, 2(3–4), 313–320. Oxford.

    Google Scholar 

  32. Khalil, K., Mary, B., & Renault, P. (2004). Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O concentration. Soil Biology & Biochemistry, 36(4), 687–699. Oxford.

    Google Scholar 

  33. Davidson, E. A., & Swank, W. T. (1986). Environmental parameters regulating gaseous nitrogen losses from 2forested ecosystems via nitrification and denitrification. Applied and Environmental Microbiology, 52(6), 1287–1292. Baltimore.

    Google Scholar 

  34. Liu, C., et al. (2011) Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agriculture, Ecosystems and Environment, 140(1–2), 226–233. Amsterdam.

    Google Scholar 

  35. Zhang, J., & Han, X. (2008). NO emission from the semiarid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment, 42(2), 291–302. Oxford.

    Google Scholar 

  36. Baggs, E. M., et al. (2000). Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 16(2), 82–87. Oxford.

    Google Scholar 

  37. Brentrup, F., et al. (2000). Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment, 5(6), 349–357. Berlin.

    Google Scholar 

  38. Denmead, O. T., et al. (2010). Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology, 150(6), 748–756. Amsterdam.

    Google Scholar 

  39. Ruser, R., et al. (2006). Emission of N2O, N2 and CO from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology & Biochemistry, 38(2), 263–274. Oxford.

    Google Scholar 

  40. Stevens, R. J., & Laughlin, R. J. (1998). Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems, 52(2–3), 131–139. Dordrecht.

    Google Scholar 

  41. Thomson, A. J., et al. (2012). Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of The Royal Society Biological Sciences, London, 367(1593), 1157–1168.

    Article  Google Scholar 

  42. Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49(1–3), 7–16. Dordrecht.

    Google Scholar 

  43. Chapuis-Lardy, L., et al. (2007). Soils, a sink for N2O?: a review. Global Change Biology, 13(1), 1–17. Oxford.

    Google Scholar 

  44. Ciampitti, I. A., Ciarlo, E. A., & Conti, M. E. (2008). Nitrous oxide emissions from soil during soybean (Glycinemax (L.) Merrill) crop phenological stages and stubbles decomposition period. Biology and Fertility of Soils, 44(4), 581–588. Berlin.

    Google Scholar 

  45. Cameron, K. C., et al. (2013). Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, 162(2), 145–173. Warwick.

    Google Scholar 

  46. Davidson, E. A., et al. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience, 50(8), 667–680. Washington, DC.

    Google Scholar 

  47. Groffman, P. M., et al. (2009). New approaches to modelling denitrification. Biogeochemistry, 93(1–2), 1–5. Dordrecht.

    Google Scholar 

  48. Cavigelli, M. A. & Robertson, G. P. (2001). Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biology & Biochemistry, 33(3), 297–310. Oxford.

    Google Scholar 

  49. Baggs, E. M., Chebii, J., & Ndufa, J. K. (2006). A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil & Tillage Research, 90(1–2), 6976. Amsterdam.

    Google Scholar 

  50. Baggs,E. M., et al. (2003). Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant and Soil, 254(2), 361–370. Dordrecht.

    Google Scholar 

  51. Huang, Y., et al. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios. Soil Biology & Biochemistry, 36(6), 973–981. Oxford.

    Google Scholar 

  52. Six, J., et al. (2004). The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biology, 10(2), 155–160. Oxford.

    Google Scholar 

  53. Van Kessen, C., et al. (2013). Climate, duration, and N placement determine NO emissions in reduced tillage systems: a meta-analysis. Global Change Biology, 19(1), 33–44. Oxford.

    Google Scholar 

  54. Mosier, A. R. (2001). Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant and Soil, 228(1), 17–27. Dordrecht.

    Google Scholar 

  55. Liu, X. J., et al. (2005). Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields. Plant and Soil, 276(1–2), 235–249. Dordrecht.

    Google Scholar 

  56. Hellebrand, H. J., Scholz, V., & Kern, J. (2008). Fertilizer induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment, 42(36), 8403–8411. Oxford.

    Google Scholar 

  57. Chen, S. T., Huang, Y., & Zou, J. W. (2008). Relationship between nitrous oxide emission and winter wheat production. Biology and Fertility of Soils, 44(7), 985–989. Berlin.

    Google Scholar 

  58. Ma, B. L., et al. (2010). Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer. Global Change Biology, 16(1), 156–170. Oxford.

    Google Scholar 

  59. Liu, X. J., et al. (2006). The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO fluxes from a clay loam soil. Plant and Soil, 280(1–2), 177–188. Dordrecht.

    Google Scholar 

  60. Shaviv, A. (2001). Advances in controlled-release fertilizers. Advances in Agronomy, 71(1), 1–49. San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorhana Yahya .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yahya, N. (2018). Urea Fertilizer: The Global Challenges and Their Impact to Our Sustainability. In: Green Urea . Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7578-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7578-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7577-3

  • Online ISBN: 978-981-10-7578-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics