Skip to main content

Potential Treatment Options in a Post-antibiotic Era

  • Conference paper
  • First Online:
Infectious Diseases and Nanomedicine III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1052))

Abstract

Following the Golden Age of antibiotic discovery in the previous century, the rate of antibiotic discovery has plummeted during the past 50 years while the incidence of antimicrobial resistance is ever-increasing. Presently, humankind is forced to address a major public health threat in the form of multiple drug resistance and urgent action is required to halt the advent of a post-antibiotic era. This chapter aims to draw the attention to the escalating global crisis of antimicrobial resistance fueled by the irresponsible use of antibiotics in healthcare and animal production sectors. The merits of alternative prevention and treatment options, including vaccines, herbal products, bacteriophages, and improved biosecurity measures are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coates A, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17:287–290

    PubMed  PubMed Central  Google Scholar 

  3. Natural Resources Defense Council (2016) New antibiotics scorecard: number of top restaurant chains restricting use in chicken doubled in 2016 [Internet]. https://www.nrdc.org/media/2016/160920. Accessed 27 July 2017

  4. European Centre for Disease Control and Prevention (2009) The bacterial challenge: time to react [Internet]. Reproduction. 2009. http://ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf

  5. Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286

    Article  CAS  PubMed  Google Scholar 

  6. Barbachyn MR, Ford CW (2003) Oxazolidinone structure-activity relationships leading to linezolid. Angew Chemie Int Ed 42:2010–2023

    Article  CAS  Google Scholar 

  7. Kern WV (2006) Daptomycin: first in a new class of antibiotics for complicated skin and soft-tissue infections. Int J Clin Pract 60:370–378

    Article  CAS  PubMed  Google Scholar 

  8. O’Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E et al (2014) Discovery of a new class of non-B-lactam inhibitors of penicillin-binding proteins with gram-positive antibacterial activity. J Am Chem Soc 136:3664–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyle W (1955) Spices and essential oils as preservatives. Am Perfum Essent Oil Rev 66:25–28

    Google Scholar 

  10. Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204

    Article  CAS  Google Scholar 

  11. Mith H, Duré R, Delcenserie V, Zhiri A, Daube G, Clinquart A (2014) Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci Nutr 2:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouaziz M, Yangui T, Sayadi S, Dhouib A (2009) Disinfectant properties of essential oils from Salvia officinalis L. cultivated in Tunisia. Food Chem Toxicol 47:2755–2760

    Article  CAS  PubMed  Google Scholar 

  13. Ziosi P, Manfredini S, Vertuani S, Ruscetta V, Radice M, Sacchetti G et al (2010) Evaluating essential oils in cosmetics: antioxidant capacity and functionality. Cosmet Toilet 6:32–40

    Google Scholar 

  14. Manabe A, Nakayama S, Sakamoto K (1987) Effects of essential oils on erythrocytes and hepatocytes from rats and dipalmitoyl phosphatidylcholine-liposomes. Jpn J Pharmacol 44:77–84

    Article  CAS  PubMed  Google Scholar 

  15. Jouany J-P, Morgavi DP (2007) Use of “natural” products as alternatives to antibiotic feed additives in ruminant production. Anim Int J Anim Biosci 1:1443–1466

    CAS  Google Scholar 

  16. Li P, Piao X, Ru Y, Han X, Xue L, Zhang H (2012) Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Australasian J Anim Sci 25:1617–1626

    Article  CAS  Google Scholar 

  17. Bento MHL, Ouwehand AC, Tiihonen K, Lahtinen S, Nurminen P, Saarinen MT et al (2013) Essential oils and their use in animal feeds for monogastric animals-effects on feed quality, gut microbiota, growth performance and food safety: a review. Vet Med (Praha) 58:449–58

    Google Scholar 

  18. Barbour EK, Shaib H, Azhar E, Kumosani T, Iyer A, Harakeh S et al (2013) Modulation by essential oil of vaccine response and production improvement in chicken challenged with velogenic newcastle disease virus. J Appl Microbiol 115:1278–1286

    Article  CAS  PubMed  Google Scholar 

  19. Barbour EK, Bragg RR, Karrouf G, Iyer A, Azhar E, Harakeh S et al (2015) Control of eight predominant Eimeria spp. involved in economic coccidiosis of broiler chicken by a chemically characterized essential oil. J Appl Microbiol 118:583–591

    Article  CAS  PubMed  Google Scholar 

  20. Mishra RPN, Oviedo-Orta E, Prachi P, Rappuoli R, Bagnoli F (2012) Vaccines and antibiotic resistance. Curr Opin Microbiol 15:596–602

    Article  CAS  PubMed  Google Scholar 

  21. Azzari C, Resti M (2008) Reduction of carriage and transmission of Streptococcus pneumoniae: The beneficial “side effect” of pneumococcal conjugate vaccine. Clin Infect Dis 47:997–999

    Article  PubMed  Google Scholar 

  22. Gonçalves G (2008) Herd immunity: recent uses in vaccine assessment. Expert Rev Vaccines 7:1493–1506

    Article  PubMed  Google Scholar 

  23. Serruto D, Serino L, Masignani V, Pizza M (2009) Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine 27:3245–3250

    Article  CAS  PubMed  Google Scholar 

  24. Finco O, Rappuoli R (2014) Designing vaccines for the twenty-first century society. Front Immunol 5:1–6

    Article  CAS  Google Scholar 

  25. Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19:2688–2691

    Article  CAS  PubMed  Google Scholar 

  26. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  PubMed  Google Scholar 

  27. Romero JD, Outschoorn IM (1994) Current status of meningococcal Group B vaccine candidates: capsular or noncapsular? Clin Microbiol Rev 7:559–575

    Article  Google Scholar 

  28. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 247:1809–1815

    Article  Google Scholar 

  29. Sette A, Rappuoli R (2012) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541

    Article  CAS  Google Scholar 

  30. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  31. De La Cruz VF, Lal AA, McCutchan TF (1988) Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J Biol Chem 263:4318–4322

    PubMed  Google Scholar 

  32. Van Houten NE, Zwick MB, Menendez A, Scott JK (2006) Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine 24:4188–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:1–18

    Article  CAS  Google Scholar 

  34. Wang H, Gao Y, Gong Y, Chen X, Liu C, Zhou X et al (2007) Identification and immunogenicity of an immunodominant mimotope of Avibacterium paragallinarum from a phage display peptide library. Vet Microbiol 119:231–239

    Article  CAS  PubMed  Google Scholar 

  35. Elbreki M, Ross RP, Hill C, O’Mahony J, McAuliffe O, Coffey A (2014) Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Viruses 2014:1–20

    Article  Google Scholar 

  36. Bragg R, Boucher C, van der Westhuizen W, Lee J-Y, Coetsee E, Theron C et al (2016) Bacteriophage therapy as a treatment option in a post-antibiotic era. In: Kon KV, Rai M (ed) Antibiotics resistant: mechanisms and new antimicrobial approaches, 1st ed. Elsevier, Amsterdam, pp 309–28

    Google Scholar 

  37. Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz) 35:569–83

    Google Scholar 

  38. Bhattacharya S (2010) The facts about penicillin allergy: a review. J Adv Pharm Technol Res 1:11–17

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Örmälä A, Jalasvuori M (2013) Should bacterial resistance to phages be a concern, even in the long run? Bacteriophage:3

    Google Scholar 

  40. Abedon ST (2012) Bacterial “immunity” against bacteriophages. Bacteriophage 2:50–54

    Article  PubMed  PubMed Central  Google Scholar 

  41. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  42. Barrangou R, Fremaux C, Devaux H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  43. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128

    Article  CAS  PubMed  Google Scholar 

  44. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc London B:931–6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2016) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432

    Article  CAS  Google Scholar 

  46. Seed KD, Lazinski DW, Calderwood SB, Camilli A (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496

    Article  CAS  PubMed  Google Scholar 

  48. Wang I-N, Smith DL, Young R (2000) Holins: The protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825

    Article  CAS  PubMed  Google Scholar 

  49. Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages how the way. FEMS Microbiol Rev 37:554–571

    Article  CAS  PubMed  Google Scholar 

  50. Tišáková L, Vidová B, Farkašovská J, Godány A (2014) Bacteriophage endolysin Lyt μ1/6: characterization of the C-terminal binding domain. FEMS Microbiol Lett 350:199–208

    Article  CAS  PubMed  Google Scholar 

  51. Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci 98:4107–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  PubMed  Google Scholar 

  53. Dong H, Zhu C, Chen J, Ye X, Huang YP (2015) Antibacterial activity of Stenotrophomonas maltophilia endolysin P28 against both gram-positive and gram-negative bacteria. Front Microbiol 6:1–8

    Google Scholar 

  54. Fernandes S, Proença D, Cantante C, Silva FA, Leandro C, Lourenço S et al (2012) Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb Drug Resist 18:333–343

    Article  CAS  PubMed  Google Scholar 

  55. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104(27):11197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bragg RR (2004) Limitation of the spread and impact of infectious coryza through the use of a continuous disinfection programme. Onderstepoort J Vet Res 71:1–8

    PubMed  CAS  Google Scholar 

  57. Bragg RR, Plumstead P (2003) Continuous disinfection as a means to control infectious diseases in poultry: evaluation of a continuous disinfection programme for broilers. Onderstepoort J Vet Res 70:219–229

    PubMed  CAS  Google Scholar 

  58. Russell AD (1998) Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 43 (Supple):S57–68

    Article  Google Scholar 

  59. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104

    Article  CAS  PubMed  Google Scholar 

  60. Russell AD (1997) Plasmids and bacterial resistance to biocides. J Appl Microbiol 83(2):155–65

    Article  CAS  PubMed  Google Scholar 

  61. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Méchin L, Dubois-Brissonnet F, Heyd B, Leveau JY (1999) Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol 86(5):859–66

    Article  PubMed  Google Scholar 

  63. White DG, McDermott PF (2001) Emergence and transfer of antibacterial resistance. J Dairy Sci 84:E151–E155

    Article  CAS  Google Scholar 

  64. Paulsen IT, Park JH, Choi PS, Saier MH Jr (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of protiens, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8

    Article  CAS  PubMed  Google Scholar 

  65. Adair FW, Geftic S, Gelzer J (1971) Resistance of Pseudomonas to quaternary ammonium compounds. Appl Microbiol 21:1058–1063

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39:381–389

    Article  CAS  PubMed  Google Scholar 

  69. McBain AJ, Ledder RG, Moore LE, Carl E, Gilbert P, Catrenich CE (2004) Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol 70:3449–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bjorland J, Sunde M, Waage S (2001) Plasmid-borne smr gene causes resistance to quaternary ammonium compounds in bovine Staphylococcus aureus. J Clin Microbiol 39:3999–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E (2005) Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J Clin Microbiol 43:4363–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ioannou CJ, Hanlon GW, Denyer SP (2007) Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob Agents Chemother 51:296–306

    Article  CAS  PubMed  Google Scholar 

  73. Bjorland J, Steinum T, Sunde M, Waage S, Heir E (2003) Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother. 47(10):3046–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heir E, Sundheim G, Holck AL (1999) Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int J Food Microbiol 48:211–219

    Article  CAS  PubMed  Google Scholar 

  75. Heir E, Sundheim G, Holck AL (1999) The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol 86:378–388

    Article  CAS  PubMed  Google Scholar 

  76. Heir E, Sundheim G, Holck AL (1998) The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett 163:49–56

    Article  CAS  PubMed  Google Scholar 

  77. Anthonisen I, Sunde M, Steinum TM, Sidhu MS, Sørum H (2002) Organization of the antiseptic resistance gene qacA and Tn 552 -related β -lactamase genes in multidrug-resistant Staphylococcus haemolyticus strains of animal and human origins. Antimicrob Agents Chemother 46:3606–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Langsrud S, Sundheim G, Borgmann-Strahsen R (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95(4):874–82

    Article  CAS  PubMed  Google Scholar 

  79. Alam MM, Ishino M, Kobayashi N (2003) Analysis of genomic diversity and evolution of the low-level antiseptic resistance gene smr in Staphylococcus aureus. Microb Drug Resist 9:S-1–S-7

    Article  Google Scholar 

  80. Littlejohn TG, DiBerardino D, Messerotti LJ, Spiers SJ, Skurray RA (1991) Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 101:59–66

    Article  CAS  PubMed  Google Scholar 

  81. Paulsen IT, Brown MH, Dunstan SJ, Skurray RA (1995) Molecular characterization of the Staphylococcal multidrug resistance export protein QacC. J Bacteriol 177:2827–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gillings MR, Holley MP, Stokes HW (2009) Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiol Lett 296:282–288

    Article  CAS  PubMed  Google Scholar 

  83. Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW (2009) Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? Int Soc Microb Ecol J 3:209–215

    CAS  Google Scholar 

  84. Recchia GD, Hall RM (1995) Gene cassettes: a new class of mobile element. Microbiology 141:3015–3027

    Article  CAS  PubMed  Google Scholar 

  85. Partridge SR, Recchia GD, Stokes HW, Hall M (2001) Family of Class 1 integrons related to In4 from Tn 1696. Society 45:3014–3020

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R R Bragg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bragg, R.R., Meyburgh, C.M., Lee, JY., Coetzee, M. (2018). Potential Treatment Options in a Post-antibiotic Era. In: Adhikari, R., Thapa, S. (eds) Infectious Diseases and Nanomedicine III. Advances in Experimental Medicine and Biology, vol 1052. Springer, Singapore. https://doi.org/10.1007/978-981-10-7572-8_5

Download citation

Publish with us

Policies and ethics