Advertisement

Comparative Analysis of Frequent Pattern Mining for Large Data Using FP-Tree and CP-Tree Methods

  • V. Annapoorna
  • M. Rama Krishna Murty
  • J. S. V. S. Hari Priyanka
  • Suresh Chittineni
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 701)

Abstract

Association rule mining plays a crucial role in many of the business organizations like retail, telecommunications, manufacturing, insurance, banking, etc., to identify association among different objects in the dataset. In the process of rule mining, identify frequent patterns, which can help to improve the business decisions. FP-growth and CP-tree are the well-known algorithms to find the frequent patterns. This work performs comparative analysis of FP-growth and CP (compact pattern)-tree based on time and space complexity parameters. The comparative analysis also focuses on scalability parameter with various benchmark dataset sizes. Outcomes of this work help others to choose the algorithm to implement in their application.

Keywords

Knowledge discovery Frequent pattern Compact pattern tree 

References

  1. 1.
    Patro, S.N., Mishra, S., Khuntia, P., et. al.: Construction of FP-tree using Huffman Coding. Int. J. Comput. Sci. (IJCSI) 9(3), 2 (May 2012)Google Scholar
  2. 2.
    Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Efficient single-pass frequent pattern mining using a prefix-tree. Inf. Sci. (Elsevier) 179, 559–583 (2008).  https://doi.org/10.1016/j.ins.2008.10.027MathSciNetCrossRefGoogle Scholar
  3. 3.
    Shrivastava, N., Khanna, R.: FP-Growth tree based algorithms analysis: CP-Tree and K Map. Bin. J. Data Min. Netw. 5, 26–29 (2015). ISSN: 2229-7170Google Scholar
  4. 4.
    Pandya, M., Trikha, P.: A new tree structure to extract frequent pattern. Int. J. Emerg. Technol. Adv. Eng 3(3) (March 2013). ISSN: 2250-2459Google Scholar
  5. 5.
    Ghatage, R. A.: Frequent pattern mining over data stream using compact sliding window tree & sliding window model. Int. Res. J. Eng. Technol. (IRJET) 02(04) (July 2015). p-ISSN: 2395-0072, e-ISSN: 2395-0056Google Scholar
  6. 6.
    Pandya, M., Trikha, P.: An efficient prefix tree structure to extract frequent pattern. Int. J. Adv. Eng. Technol. 6(3), 1220–1227 (July 2013)Google Scholar
  7. 7.
    Zhang, S., Zhang, J., Zhang, C.: EDUA: an efficient algorithm for dynamic database mining. Inf. Sci. (Elsevier) 177, 2756–2767 (2007)CrossRefGoogle Scholar
  8. 8.
    Srimania, P.K., Patilb, M.M.: Frequent item set mining using INC_MINE. In: Massive Online Analysis Frame work, Science Direct, Procedia Computer Science, vol. 45, pp. 133–142. (Elsevier) (2015)Google Scholar
  9. 9.
    Meenakshi, A.: Survey of frequent pattern mining algorithms in horizontal and vertical data layouts. Int. J. Adv. Comput. Sci. Technol. ISSN 4(4), 2320–2602 (April 2015)Google Scholar
  10. 10.
    Nasreen, S., Azam, M.A., Shehzad, K., et.al.: Frequent pattern mining algorithms for finding associated frequent patterns for data streams. In: A Survey, International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN) Science Direct, Pro: Computer Science, vol. 37, pp. 109–116 (2014)Google Scholar
  11. 11.
    Koh, Y.S., Dobbie, G.: SPO-Tree: Efficient Single Pass Ordered Incremental Pattern Mining. Springer, Berlin, vol. 6862, pp. 265–276 (2011).  https://doi.org/10.1007/978-3-642-23544-3-20CrossRefGoogle Scholar
  12. 12.
    Lodhi, N.S., Dangra, J., Rawat, M.K.: A compact table based time efficient technique for mining frequent items from a transactional data base. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(1) (January 2015). ISSN: 2277 128XGoogle Scholar
  13. 13.
    Fole, M.D., Choudhary, C.: Finding an efficient approach for generating frequent patterns in large database. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 4(2) (Februray 2015)Google Scholar
  14. 14.
    Narvekar, M., Syed, S.F.: An optimized algorithm for association rule mining using FP Tree. Procedia Comput. Sci. (Elsevier) 45, 101–110 (2015)CrossRefGoogle Scholar
  15. 15.
    Shashikumar, G., Totad, R.B., Geeta, P.V.G.D., Reddy, P.: Batch incremental processing for FP-tree construction using FP-Growth algorithm. In: Knowledge and Information Systems. Springer (2012).  https://doi.org/10.1007/s10115-012-0514-9

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • V. Annapoorna
    • 1
  • M. Rama Krishna Murty
    • 1
  • J. S. V. S. Hari Priyanka
    • 1
  • Suresh Chittineni
    • 1
  1. 1.ANITSBheemunipatnam, VisakhapatnamIndia

Personalised recommendations