Skip to main content

An Efficient Framework Based on Segmented Block Analysis for Human Activity Recognition

  • Conference paper
  • First Online:
Information and Decision Sciences

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 701))

  • 1363 Accesses

Abstract

Video surveillance systems core component is human activity recognition. Analysis and identification of human activity emphasize on understanding human behavior in the video. Human activity recognition aims to automatically conjecture the activity being acted by a person. In this paper, we propose a novel feature description algorithm in which a segmented block of logarithm-based motion-generating frames is normalized for analysis of action being performed in the image sequences. The features obtained are classified using random forest classifier. We evaluated the framework on HMDB-51 and ATM datasets and achieved an average accuracy of 58.24 and 93.57%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey, M., Sanserwal, V., Tripathi, V.: Intelligent Vision Based Surveillance Framework for ATM Premises. Int. J. Control Theor. Appl. (2016)

    Google Scholar 

  2. Ryoo, M.S., Agarwal, J.K.: UT-Interaction dataset. In: IEEE International Conference on Pattern Recognition Workshops, vol. 2 (2010)

    Google Scholar 

  3. Kuehne, H., Jhuang, H., Stiefelhagen, R., Serre, T.: HMDB: a large video database for human motion recognition: In Proc. IEEE International Conference in Computer Vision (ICCV), Barcelona, Spain, pp. 2556–2563 (2011)

    Google Scholar 

  4. Tripathi, V., Mittal, A., Gangodkar, D., Kanth, V.: Real time security framework for detecting abnormal events at ATM installations. J. Real-Time Image Process. (2016)

    Google Scholar 

  5. Ramasso, E., Panagiotakis, C., Pellerin, D., Rombaut, M.: Human action recognition in videos based on the Transferable Belief Model. Pattern Anal. Appl. 11(1), 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  6. Davis, J.W., Bobick, A.F.: The representation and recognition of human movement using temporal templates. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1997, pp. 928–934

    Google Scholar 

  7. Marín-Jiménez, M., Pérez de la Blanca, N., Mendoza, M.: Human action recognition from simple feature pooling. Pattern Anal. Appl. 17(1), 17–36 (2014)

    Article  MathSciNet  Google Scholar 

  8. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  9. Ahad, M.A.R., Ogata, T., Tan, J.K., Kim, H.S., Ishikawa, S.: Directional motion history templates for low resolution motion recognition. In: 34th Annual Conference on Industrial Electronics, pp. 1875–1880 (2008)

    Google Scholar 

  10. Ahad, M.A.R., Ogata, T., Tan, J.K., Kim, H.S., Ishikawa, S.: Template-based human motion recognition for complex activities. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 673–678 (2008)

    Google Scholar 

  11. Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F.J., Jimenez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2016)

    Article  Google Scholar 

  12. Holte, C.B., Moeslund, T.B., Gonzàlez, J.: Selective spatio-temporal interest points. Comput. Vis. Image Underst. 116(3), 396–410 (2012)

    Article  Google Scholar 

  13. Hu, R., Collomosse, J.: A performance evaluation of gradient field hog descriptor for sketch based image retrieval. Comput. Vis. Image Underst. 117(7), 790–806 (2013)

    Article  Google Scholar 

  14. Laptev, I., Lindeberg, T., Velocity adaptation of space-time interest points. In: Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, vol. 1, pp. 52–56 (2004)

    Google Scholar 

  15. Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: International Workshop on Automatic Face and Gesture Recognition, vol. 12, pp. 296–301 (1995)

    Google Scholar 

  16. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  17. Yussiff, A., Yong, S., Baharudin, B.B.: Detecting people using histogram of oriented gradients: a step towards abnormal human activity detection. In: Advances in Computer Science and its Applications, pp. 1145–1150. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  18. Oreifej, O., Liu, Z.: Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 716–723 (2013)

    Google Scholar 

  19. Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)

    Google Scholar 

  20. Wang, H., Ullah, M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: BMVC (2009)

    Google Scholar 

  21. Rashwan, H.A., Mohamed, M.A., Angel Garca, M., Mertsching, B., Puig, D.: Illumination robust optical flow model based on histogram of oriented gradients. In: German Conference on Pattern Recognition, pp. 354–363. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  22. Uijlings, J., Duta, I.C., Sangineto, E., Sebe, N.: Video classification with densely extracted hog/hof/mbh features: an evaluation of the accuracy/computational efficiency trade-off. Int. J. Multimedia Inf. Retr. 4(1), 33–44 (2015)

    Article  Google Scholar 

  23. Tripathi, V., Gangodkar, D., Latta, V., Mittal, A.: Robust abnormal event recognition via motion and shape analysis at ATM installations. J. Elect. Comput. Eng. (2015)

    Google Scholar 

  24. Mahbub, U., Imtiaz, H., Ahad, M.A.R.: An optical flow based approach for action recognition: In: Computer and Information Technology (ICCIT), Dhaka, Bangladesh, pp. 646–651 (2011)

    Google Scholar 

  25. Sanserwal, V., Pandey, M., Tripathy, V., Chan, Z.: Comparative Analysis of Various Feature Descriptors for Efficient ATM Surveillance Framework (2016)

    Google Scholar 

  26. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV (2013)

    Google Scholar 

  27. Jain, M., Jegou, H., Bouthemy, P.: Better exploiting motion for better action recognition. In: CVPR, (2013)

    Google Scholar 

  28. H. Wang, A. Klaeser, C. Schmid, and C-L Liu: Dense trajectories and motion boundary descriptors for action recognition. IJCV, (2013)

    Article  MathSciNet  Google Scholar 

  29. Jiang, Y., Dai, Q., Xue, X., Liu, W., Ngo, C.: Trajectory-based modeling of human actions with motion reference points. In: ECCV (2012)

    Chapter  Google Scholar 

  30. Can, E.F., Manmatha, R.: Formulating action recognition as a ranking problem. In: International workshop on Action Similarity in Unconstrained Videos (2013)

    Google Scholar 

  31. Kliper-Gross, O., Gurovich, Y., Hassner, T., Wolf, L.: Motion Interchange Patterns for Action Recognition in Unconstrained Videos. In: ECCV (2012)

    Chapter  Google Scholar 

  32. Solmaz, B., Assari, S.M., Shah, M.: Classifying web videos using a global video descriptor. Mach. Vis. Appl. (2012)

    Google Scholar 

  33. Sadanand, S., Corso, J.: Action Bank: a high-level representation of activity in video. In: CVPR (2012)

    Google Scholar 

  34. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV pp. 2556–2563 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tripathi, V., Gangodkar, D., Pandey, M., Sanserwal, V. (2018). An Efficient Framework Based on Segmented Block Analysis for Human Activity Recognition. In: Satapathy, S., Tavares, J., Bhateja, V., Mohanty, J. (eds) Information and Decision Sciences. Advances in Intelligent Systems and Computing, vol 701. Springer, Singapore. https://doi.org/10.1007/978-981-10-7563-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7563-6_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7562-9

  • Online ISBN: 978-981-10-7563-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics