Advertisement

Application of Total Least Squares Version of ESPRIT Algorithm for Seismic Signal Processing

  • G. Pradeep Kamal
  • S. Koteswara Rao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 701)

Abstract

Estimation of frequency with high resolution is a crucial task in signal processing. Raw seismic signals consist of huge noise which can be removed only by using some signal processing methods. In this paper, the ESPRIT algorithm is implemented in order to process the signal. A time series data is taken and the frequency is estimated by total least squares version of ESPRIT algorithm. ESPRIT employs a basic rotational invariance in the subspaces of the signal. The detailed implementation of the algorithm is greatly presented in the following sections.

Keywords

Seismology Power spectral density Least square estimation Digital signal processing Frequency estimation 

References

  1. 1.
    Mousa, W.A., Al-Shuhail, A.A.: Processing of seismic reflection data using Matlab. In: Synthesis Lectures on Signal Processing. Morgan & Claypool PublishersGoogle Scholar
  2. 2.
    Kirlin, R.L., Done, W.J.: Covariance Analysis of Seismic Signal Processing. Seismic Library (1999)Google Scholar
  3. 3.
    Mousa, W.A., Al-Shuhail, A.A.: Processing of Seismic Reflection Data Using MATLAB (2011)Google Scholar
  4. 4.
    Roy, R., Ottersten, B., Swindlehurst, L., Kailath, T.: Multiple invariance ESPRIT. IEEE Trans. Acoust. Speech Signal Process. (in preparation)Google Scholar
  5. 5.
    Paulraj, A., Roy, R., Kailath, T.: A subspace rotation approach to signal parameter estimation. Proc. IEEE 1044–1045 (1986)CrossRefGoogle Scholar
  6. 6.
    Hayes, M.H.: Statical Digital Signal Processing and Modeling. Wiley (1996)Google Scholar
  7. 7.
    Lemma, A.N., van der Veen, A.-J., Deprettere, E.F.: Analysis of joint angle frequency estimation using ESPRIT. IEEE Trans. Signal Process. 55(5), 1264–1283 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yuen, N., Friedlander, B.: Performance analysis of higher order ESPRIT for localization of near field sources. IEEE Trans. Signal Process. 46(3) (1998)CrossRefGoogle Scholar
  9. 9.
    Vaseghi, S.V.: Advanced Signal Processing and Noise Reduction. Wiley (2008)Google Scholar
  10. 10.
    Manolakis, G., Ingle, V.K.: Statistical and Adaptive Signal Processing. McGraw-Hill (2000)Google Scholar
  11. 11.
    Stoica, P., Moses, R.: Spectral Analysis of Signals. Prentice Hall Inc. (2005)Google Scholar
  12. 12.
    Rouqutte, S., Najim, M.: Estimation of frequency and damping factors by two dimensional ESPRIT type methods. IEEE Trans. Signal Process. 49(1) (2002)Google Scholar
  13. 13.
    Roy, R., Paulraj, A., Kailath, T.: ESPRIT-a subspace rotation approach to estimation of parameters of Cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1340–1342 (1986)CrossRefGoogle Scholar
  14. 14.
    Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringK L UniversityVaddeswaram, GunturIndia

Personalised recommendations