Cellular Processes of Notochord Formation

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1029)


This review covers recent advances in our understanding of the cell biology and morphogenesis of the ascidian notochord. In its development, the ascidian notochord undergoes a rapid series of cellular and morphogenic events that transform a group of 40 loosely packed cells in the neurula embryo into a tubular column with central lumen in the larva. The ascidian notochord has been a subject of intensive research in recent years, and particular focus in this review will be on events associated with the development and function of polarized cell properties, and the mechanism of lumen formation.


Ascidian Ciona Notochord Planar cell polarity Morphogenesis Lumenization 



I thank Erin Newman-Smith, Matt Kourakis, and Di Jiang for their critical reading of this manuscript. This work is supported by award HD038701 from the National Institutes of Health.


  1. Annona G, Holland ND, D'Aniello S (2015) Evolution of the notochord. EvoDevo 6:30CrossRefPubMedPubMedCentralGoogle Scholar
  2. Axelrod JD (2009) Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol 20(8):964–971CrossRefPubMedGoogle Scholar
  3. Brittle A, Thomas C, Strutt D (2012) Planar polarity specification through asymmetric subcellular localization of fat and Dachsous. Curr Biol CB 22(10):907–914CrossRefPubMedGoogle Scholar
  4. Brunetti R et al (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res 53(3):186–193CrossRefGoogle Scholar
  5. Carlson M, Reeves W, Veeman M (2015) Stochasticity and stereotypy in the Ciona notochord. Dev Biol 397(2):248–256CrossRefPubMedGoogle Scholar
  6. Casal J, Lawrence PA, Struhl G (2006) Two separate molecular systems, Dachsous/fat and starry night/frizzled, act independently to confer planar cell polarity. Development 133(22):4561–4572CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chambon JP et al (2002) Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development 129(13):3105–3114PubMedGoogle Scholar
  8. Chiba S et al (2009) Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 136(1):35–39CrossRefPubMedGoogle Scholar
  9. Cloney RA (1978) Ascidian metamorphosis: review and analysis. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine larvae. Elsevier, Amsterdam, pp 255–282Google Scholar
  10. Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124(3):589–602PubMedGoogle Scholar
  11. Deng W et al (2013) Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci U S A 110(37):14972–14977CrossRefPubMedPubMedCentralGoogle Scholar
  12. Denker E, Jiang D (2012) Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis. Semin Cell Dev Biol 23(3):308–319CrossRefPubMedGoogle Scholar
  13. Denker E, Bocina I, Jiang D (2013) Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 140(14):2985–2996CrossRefPubMedGoogle Scholar
  14. Denker E et al (2015) Regulation by a TGFbeta-ROCK-actomyosin axis secures a non-linear lumen expansion that is essential for tubulogenesis. Development 142(9):1639–1650CrossRefPubMedGoogle Scholar
  15. Dong B et al (2009) Tube formation by complex cellular processes in Ciona Intestinalis notochord. Dev Biol 330(2):237–249CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dong B, Deng W, Jiang D (2011) Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis. Development 138(8):1631–1641CrossRefPubMedGoogle Scholar
  17. Ellis K, Hoffman BD, Bagnat M (2013) The vacuole within: how cellular organization dictates notochord function. BioArchitecture 3(3):64–68CrossRefPubMedPubMedCentralGoogle Scholar
  18. Flood PR, Guthrie DM, Banks JR (1969) Paramyosin muscle in the notochord of amphioxus. Nature 222(5188):87–88CrossRefPubMedGoogle Scholar
  19. Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Development 138(10):1877–1892CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gray RS, Roszko I, Solnica-Krezel L (2011) Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 21(1):120–133CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gros J, Serralbo O, Marcelle C (2009) WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature 457(7229):589–593CrossRefPubMedGoogle Scholar
  22. Gubb D, Garcia-Bellido A (1982) A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol 68:37–57PubMedGoogle Scholar
  23. Hale R et al (2015) Cellular interpretation of the long-range gradient of four-jointed activity in the drosophila wing. Elife 4Google Scholar
  24. Heisenberg CP et al (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405(6782):76–81CrossRefPubMedGoogle Scholar
  25. Hotta K et al (2007) A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Develop Dynam 236(7):1790–1805CrossRefGoogle Scholar
  26. Hudson C, Yasuo H (2006) A signalling relay involving nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 133(15):2855–2864CrossRefPubMedGoogle Scholar
  27. Imai KS et al (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131(16):4047–4058CrossRefPubMedGoogle Scholar
  28. Jiang D, Smith WC (2007) Ascidian notochord morphogenesis. Dev Dyn 236(7):1748–1757CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jiang D, Munro EM, Smith WC (2005) Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 15(1):79–85CrossRefPubMedGoogle Scholar
  30. Karaiskou A et al (2015) Metamorphosis in solitary ascidians. Genesis 53(1):34–47CrossRefPubMedGoogle Scholar
  31. Keller R et al (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond Ser B Biol Sci 355(1399):897–922CrossRefGoogle Scholar
  32. Kilian B et al (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 120(4):467–476CrossRefPubMedGoogle Scholar
  33. Kourakis MJ et al (2014) A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona. Dev Biol 395(1):120–130CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kumano G, Nishida H (2007) Ascidian embryonic development: an emerging model system for the study of cell fate specification in chordates. Dev Dyn 236(7):1732–1747CrossRefPubMedGoogle Scholar
  35. Lawrence PA, Struhl G, Casal J (2007) Planar cell polarity: one or two pathways? Nat Rev Genet 8(7):555–563CrossRefPubMedPubMedCentralGoogle Scholar
  36. Le Pabic P, Ng C, Schilling TF (2014) Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development. PLoS Genet 10(10):e1004726CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lemaire P (2009) Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 332(1):48–60CrossRefPubMedGoogle Scholar
  38. Lemaire P, Smith WC, Nishida H (2008) Ascidians and the plasticity of the chordate developmental program. Curr Biol CB 18(14):R620–R631CrossRefPubMedGoogle Scholar
  39. Mao Y et al (2011) Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138(5):947–957CrossRefPubMedPubMedCentralGoogle Scholar
  40. Matakatsu H, Blair SS (2004) Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131(15):3785–3794CrossRefPubMedGoogle Scholar
  41. Matis M et al (2014) Microtubules provide directional information for core PCP function. elife 3:e02893CrossRefPubMedPubMedCentralGoogle Scholar
  42. Matsunobu S, Sasakura Y (2015) Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis. Dev Biol 405(1):71–81CrossRefPubMedGoogle Scholar
  43. Maung SM, Jenny A (2011) Planar cell polarity in drosophila. Organogenesis 7(3):165–179CrossRefPubMedPubMedCentralGoogle Scholar
  44. McCaffrey LM, Macara IG (2012) Signaling pathways in cell polarity. Cold Spring Harb Perspect Biol 4(6)Google Scholar
  45. McCann MR, Seguin CA (2016) Notochord cells in intervertebral disc development and degeneration. J Dev Biol 4(1):1–18PubMedCentralGoogle Scholar
  46. McGreevy EM et al (2015) Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol Open 4(2):186–196CrossRefPubMedPubMedCentralGoogle Scholar
  47. Merkel M et al (2014) The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems. Curr Biol 24(18):2111–2123CrossRefPubMedGoogle Scholar
  48. Miyamoto DM, Crowther RJ (1985) Formation of the notochord in living ascidian embryos. J Embryol Exp Morphol 86:1–17PubMedGoogle Scholar
  49. Munro EM, Odell G (2002a) Morphogenetic pattern formation during ascidian notochord formation is regulative and highly robust. Development 129(1):1–12PubMedGoogle Scholar
  50. Munro EM, Odell GM (2002b) Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129(1):13–24PubMedGoogle Scholar
  51. Nakayama-Ishimura A et al (2009) Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol 326(2):357–367CrossRefPubMedGoogle Scholar
  52. Newman-Smith E et al (2015) Reciprocal and dynamic polarization of planar cell polarity core components and myosin. elife 4:e05361CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol 121(2):526–541CrossRefPubMedGoogle Scholar
  54. Niwano T et al (2009) Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia Roretzi. Biol Cell 101(11):645–659CrossRefPubMedPubMedCentralGoogle Scholar
  55. Noda T, Satoh N (2008) A comprehensive survey of cadherin superfamily gene expression patterns in Ciona intestinalis. Gene Expr Patterns 8(5):349–356CrossRefPubMedGoogle Scholar
  56. Ogura Y, Sasakura Y (2013) Ascidians as excellent models for studying cellular events in the chordate body plan. Biol Bull 224(3):227–236CrossRefPubMedGoogle Scholar
  57. Olofsson J et al (2014) Prickle/spiny-legs isoforms control the polarity of the apical microtubule network in planar cell polarity. Development 141(14):2866–2874CrossRefPubMedPubMedCentralGoogle Scholar
  58. Passamaneck YJ, Di Gregorio A (2005) Ciona Intestinalis: chordate development made simple. Dev Dyn 233(1):1–19CrossRefPubMedGoogle Scholar
  59. Pennati R et al (2015) Morphological differences between larvae of the Ciona intestinalis species complex: hints for a valid taxonomic definition of distinct species. PLoS One 10(5):e0122879CrossRefPubMedPubMedCentralGoogle Scholar
  60. Placzek M (1995) The role of the notochord and floor plate in inductive interactions. Curr Opin Genet Dev 5(4):499–506CrossRefPubMedGoogle Scholar
  61. Reeves W, Thayer R, Veeman M (2014) Anterior-posterior regionalized gene expression in the Ciona notochord. Dev Dyn 243(4):612–620CrossRefPubMedGoogle Scholar
  62. Ryan K, Lu Z, Meinertzhagen IA (2016) The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. elife 5Google Scholar
  63. Saburi S et al (2012) Functional interactions between fat family cadherins in tissue morphogenesis and planar polarity. Development 139(10):1806–1820CrossRefPubMedPubMedCentralGoogle Scholar
  64. Satoh N (2014) Developmental genomics of ascidians. Wiley Blackwell, Hoboken, xi, 201 pagesGoogle Scholar
  65. Satou Y et al (2001) Gene expression profiles in Ciona intestinalis tailbud embryos. Development 128(15):2893–2904PubMedGoogle Scholar
  66. Satou Y et al (2008) Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol 9(10):R152CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23(3):265–277CrossRefPubMedGoogle Scholar
  68. Schnell U, Carroll TJ (2014) Planar cell polarity of the kidney. Exp Cell Res 343:258CrossRefPubMedPubMedCentralGoogle Scholar
  69. Segade F et al (2016) Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo 7(1):21CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sehring IM et al (2014) An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol 12(2):e1001781CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sehring IM et al (2015) Assembly and positioning of actomyosin rings by contractility and planar cell polarity. elife 4:e09206CrossRefPubMedPubMedCentralGoogle Scholar
  72. Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8(2):126–138CrossRefPubMedGoogle Scholar
  73. Shafer B et al (2011) Vangl2 promotes Wnt/planar cell polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. Dev Cell 20(2):177–191CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shi W et al (2009) FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development 136(1):23–28CrossRefPubMedGoogle Scholar
  75. Shimeld SM (1999) The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol 209(1):40–47CrossRefPubMedGoogle Scholar
  76. Thomas C, Strutt D (2012) The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Develop Dynam 241(1):27–39CrossRefGoogle Scholar
  77. Urano A et al (2003) Expression of muscle-related genes and two MyoD genes during amphioxus notochord development. Evol Dev 5(5):447–458CrossRefPubMedGoogle Scholar
  78. Veeman MT, Smith WC (2013) Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper. Dev Biol 373(2):281–289CrossRefPubMedGoogle Scholar
  79. Veeman MT et al (2008) Chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development 135(1):33–41CrossRefPubMedGoogle Scholar
  80. Wallingford JB (2012) Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 28:627–653CrossRefPubMedGoogle Scholar
  81. Wallingford JB et al (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405(6782):81–85CrossRefPubMedGoogle Scholar
  82. Winter CG et al (2001) Drosophila Rho-associated kinase (Drok) links frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105(1):81–91CrossRefPubMedGoogle Scholar
  83. Wong LL, Adler PN (1993) Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J Cell Biol 123(1):209–221CrossRefPubMedGoogle Scholar
  84. Wu J, Mlodzik M (2009) A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol 19(7):295–305CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wu J et al (2013) Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat Cell Biol 15(9):1045–1055CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Developmental Biology and Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations