Skip to main content

CRISPR Knockouts in Ciona Embryos

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1029)

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has emerged as a revolutionary tool for fast and efficient targeted gene knockouts and genome editing in almost any organism. The laboratory model tunicate Ciona is no exception. Here, we describe our latest protocol for the design, implementation, and evaluation of successful CRISPR/Cas9-mediated gene knockouts in somatic cells of electroporated Ciona embryos. Using commercially available reagents, publicly accessible plasmids, and free web-based software applications, any Ciona researcher can easily knock out any gene of interest in their favorite embryonic cell lineage.

Keywords

  • Genome editing
  • Targeted mutagenesis
  • Somatic gene knockout
  • sgRNAs
  • Tunicates
  • Chordates

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7545-2_13
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-7545-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   189.00
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2

References

  • Abdul-Wajid S, Morales-Diaz H, Khairallah SM, Smith WC (2015) T-type Calcium Channel regulation of neural tube closure and EphrinA/EPHA expression. Cell Rep 13:829–839

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    CAS  CrossRef  PubMed  Google Scholar 

  • Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20:135–141

    CAS  CrossRef  PubMed  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764–764

    CAS  CrossRef  PubMed  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Christiaen L, Wagner E, Shi W, Levine M (2009) Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harbor protocols 2009: pdb. prot5345

    Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cota CD, Davidson B (2015) Mitotic membrane turnover coordinates differential induction of the heart progenitor lineage. Dev Cell 34:505–519

    CAS  CrossRef  PubMed  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Fusi, N., I. Smith, J. Doench and J. Listgarten, 2015 In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency. bioRxiv: 021568

    Google Scholar 

  • Gandhi S, Haeussler M, Razy-Krajka F, Christiaen L, Stolfi A (2017) Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona. Dev Biol 425:8–20

    Google Scholar 

  • Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    CAS  CrossRef  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Iaffaldano B, Zhang Y, Cornish K (2016) CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using agrobacterium rhizogenes without selection. Ind Crop Prod 89:356–362

    CAS  CrossRef  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  CrossRef  PubMed  Google Scholar 

  • Jinek M, East A, Cheng A, Lin S, Ma E et al (2013) RNA-programmed genome editing in human cells. elife 2:e00471

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kawai N, Ochiai H, Sakuma T, Yamada L, Sawada H et al (2012) Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Develop Growth Differ 54:535–545

    CAS  CrossRef  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Long S, Wang Q, Sibley LD (2016) Analysis of noncanonical calcium-dependent protein kinases in toxoplasma gondii by targeted gene deletion using CRISPR/Cas9. Infect Immun 84:1262–1273

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH et al (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    CAS  CrossRef  PubMed  Google Scholar 

  • Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Meth 12:982–988

    CAS  CrossRef  Google Scholar 

  • Nishiyama A, Fujiwara S (2008) RNA interference by expressing short hairpin RNA in the Ciona intestinalis embryo. Develop Growth Differ 50:521–529

    CAS  CrossRef  Google Scholar 

  • Nomura T, Sakurai T, Osakabe Y, Osakabe K, Sakakibara H (2016) Efficient and heritable targeted mutagenesis in mosses using the CRISPR/Cas9 system. Plant Cell Physiol 57:2600–2610

    CAS  CrossRef  PubMed  Google Scholar 

  • Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6

    Google Scholar 

  • Orioli A, Pascali C, Quartararo J, Diebel KW, Praz V et al (2011) Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Res 39:5499–5512

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Perry KJ, Henry JQ (2015) CRISPR/Cas9-mediated genome modification in the mollusc, Crepidula Fornicata. Genesis 53:237–244

    CAS  CrossRef  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Roy S, Schreiber E (2014) Detecting and quantifying low level gene variants in sanger sequencing traces using the ab1 peak reporter tool. J Biomol Techn JBT 25:S13

    Google Scholar 

  • Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510

    CAS  CrossRef  Google Scholar 

  • Satou Y, Shin-i T, Kohara Y, Satoh N, Chiba S (2012) A genomic overview of short genetic variations in a basal chordate, Ciona Intestinalis. BMC Genomics 13:208

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Segade F, Cota C, Famiglietti A, Cha A, Davidson B (2016) Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona Intestinalis. EvoDevo 7:21

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M et al (2016) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep:1–8

    Google Scholar 

  • Tolkin T, Christiaen L (2016) Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development 143:3852–3862

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N et al (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487

    CAS  CrossRef  PubMed  Google Scholar 

  • Urban A, Neukirchen S, Jaeger K-E (1997) A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res 25:2227–2228

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Treen N, Hozumi A, Sakuma T, Yamamoto T et al (2014) Germ cell mutations of the ascidian Ciona Intestinalis with TALE nucleases. Genesis 52:431–439

    CAS  CrossRef  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the laboratory of L.C. is supported by R01 awards HL108643 and GM096032 from the NIH/NHLBI and NIH/NIGMS respectively; and by grant 15CVD01 from the Leducq Foundation. A.S. is supported by R00 award HD084814 from the NIH/NICHD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lionel Christiaen or Alberto Stolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gandhi, S., Razy-Krajka, F., Christiaen, L., Stolfi, A. (2018). CRISPR Knockouts in Ciona Embryos. In: Sasakura, Y. (eds) Transgenic Ascidians . Advances in Experimental Medicine and Biology, vol 1029. Springer, Singapore. https://doi.org/10.1007/978-981-10-7545-2_13

Download citation