Advertisement

Germline Transgenesis in Ciona

  • Yasunori Sasakura
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1029)

Abstract

Transgenesis is an indispensable method for elucidating the cellular and molecular mechanisms underlying biological phenomena. In Ciona, transgenic lines that have a transgene insertion in their genomes have been created. The transgenic lines are valuable because they express reporter genes in a nonmosaic manner. This nonmosaic manner allows us to accurately observe tissues and organs. The insertions of transgenes can destroy genes to create mutants. The insertional mutagenesis is a splendid method for investigating functions of genes. In Ciona intestinalis, expression of the gfp reporter gene is subjected to epigenetic silencing in the female germline. This epigenetic silencing has been used to establish a novel method for knocking down maternal expression of genes. The genetic procedures based on germline transgenesis facilitate studies for addressing gene functions in Ciona.

Keywords

Germline transgenesis Transposon Minos Sleeping beauty I-SceCellulose Maternal 

References

  1. Arca B, Zabalou S, Loukeris TG, Savakis C (1997) Mobilization of a Minos transposon in Drosophila melanogaster chromosomes and chromatid repair by heteroduplex formation. Genetics 145:267–279PubMedPubMedCentralGoogle Scholar
  2. Awazu S, Sasaki A, Matsuoka T, Satoh N, Sasakura Y (2004) An enhancer trap in the ascidian Ciona intestinalis identifies enhancers of its Musashi orthologous gene. Dev Biol 275:459–472CrossRefPubMedGoogle Scholar
  3. Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y (2007) High-throughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis. Genesis 45:307–317CrossRefPubMedGoogle Scholar
  4. Bruma S, Chen BPC, Chen DJ (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair 5:1042–1048CrossRefGoogle Scholar
  5. Chiba S, Jiang D, Satoh N, Smith WC (2009) Brachyury null mutant-induced defects in juvenile ascidian endodermal organs. Development 136:35–39CrossRefPubMedGoogle Scholar
  6. Cloney RA (1982) Ascidian larvae and the events of metamorphosis. Am Zool 22:817–826CrossRefGoogle Scholar
  7. Conklin EG (1905a) The organization and cell lineage of the ascidian egg. J Acad. Nat Sci 13:1–119Google Scholar
  8. Conklin EG (1905b) Organ forming substances in the eggs of ascidians. Biol Bull 8:205–230CrossRefGoogle Scholar
  9. Conklin EG (1905c) Mosaic development in ascidian eggs. J Exp Zool 2:146–223CrossRefGoogle Scholar
  10. Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602PubMedGoogle Scholar
  11. Deschet K, Nakatani Y, Smith WC (2003) Generation of Ci-Brachyury-GFP stable transgenic lines in the ascidian Ciona savignyi. Genesis 35:248–259CrossRefPubMedGoogle Scholar
  12. Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci U S A 103:8727–8732CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  14. Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19:6646CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hatta K, Ankri N, Faber DS, Korn H (2006) Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev Dyn 235:2192–2199CrossRefPubMedGoogle Scholar
  16. Horie T, Nakagawa M, Sasakura Y, Kusakabe TG (2009) Cell type and function of neurons in the ascidian nervous system. Develop Growth Differ 51:207–220CrossRefGoogle Scholar
  17. Horie T, Shinki R, Ogura Y, Kusakabe TG, Satoh N, Sasakura Y (2011) Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469:525–528CrossRefPubMedGoogle Scholar
  18. Hozumi A, Kawai N, Yoshida R, Ogura Y, Ohta N, Satake H, Satoh N, Sasakura Y (2010) Efficient transposition of a single Minos transposon copy in the genome of the ascidian Ciona intestinalis with a transgenic line expressing transposase in eggs. Dev Dyn 239:1076–1088CrossRefPubMedGoogle Scholar
  19. Hozumi A, Mita K, Miskey C, Mates L, Izsvak Z, Ivics Z, Satake H, Sasakura Y (2013) Germline transgenesis of the chordate Ciona intestinalis with hyperactive variants of sleeping beauty transposable element. Dev Dyn 242:30–43CrossRefPubMedGoogle Scholar
  20. Hozumi A, Horie T, Sasakura Y (2015) Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev Dyn 244:1375–1393CrossRefPubMedGoogle Scholar
  21. Iitsuka T, Mita K, Hozumi A, Hamada M, Satoh N, Sasakura Y (2014) Transposon-mediated targeted and specific knockdown of maternally expressed transcripts in the ascidian Ciona intestinalis. Sci Rep 4:5050CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ikuta T, Saiga H (2007) Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain-hindbrain boundary region. Dev Biol 312:631–643CrossRefPubMedGoogle Scholar
  23. Imai JH, Meinertzhagen IA (2007a) Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system. J Comp Neurol 501:316–334CrossRefPubMedGoogle Scholar
  24. Imai JH, Meinertzhagen IA (2007b) Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system. J Comp Neurol 501:335–352CrossRefPubMedGoogle Scholar
  25. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510CrossRefPubMedGoogle Scholar
  26. Joly JS, Kano S, Matsuoka T, Auger H, Hirayama K, Satoh N, Awazu S, Legendre L, Sasakura Y (2007) Culture of Ciona intestinalis in closed systems. Dev Dyn 236:1832–1840CrossRefPubMedGoogle Scholar
  27. Kamiya C, Ohta N, Ogura Y, Yoshida K, Horie T, Kusakabe TG, Satake H, Sasakura Y (2014) Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis. Dev Dyn 243:1524–1535CrossRefPubMedGoogle Scholar
  28. Kawakami K, Shima A (1999) Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240:239–244CrossRefPubMedGoogle Scholar
  29. Klinakis AG, Loukeris TG, Pavlopoulos A, Savakis C (2000a) Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol 9:269–275CrossRefPubMedGoogle Scholar
  30. Klinakis AG, Zagoraiou L, Vassilatis DK, Savakis C (2000b) Genome-wide insertional mutagenesis in human cells by the Drosophila Mobile element Minos. EMBO Rep 1:416–421CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138:2143–2152CrossRefPubMedGoogle Scholar
  32. Liu C (2013) Strategies for designing transgenic DNA constructs. Methods Mol Biol 1027Google Scholar
  33. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463CrossRefPubMedGoogle Scholar
  34. Loukeris TG, Livadaras I, Arca B, Zabulou S, Savakis C (1995) Gene transfer into the Medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270:2002–2005CrossRefPubMedGoogle Scholar
  35. Matsuoka T, Awazu S, Satoh N, Sasakura Y (2004) Minos transposon causes germline transgenesis of the ascidian Ciona savignyi. Develop Growth Differ 46:249–255CrossRefGoogle Scholar
  36. Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N (2004) The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88CrossRefPubMedGoogle Scholar
  37. Nakatani Y, Moody R, Smith WC (1999) Mutations affecting tail and notochord development in the ascidian Ciona savignyi. Development 126:3293–3301PubMedGoogle Scholar
  38. Nicol D, Meinertzhagen IA (1991) Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.) J Comp Neurol 309:415–429CrossRefPubMedGoogle Scholar
  39. Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y (2011) Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 138:577–587CrossRefPubMedGoogle Scholar
  40. Pan F, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235:247–252CrossRefPubMedGoogle Scholar
  41. Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative development studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci U S A 102:7888–7893CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24:9572–9579CrossRefPubMedGoogle Scholar
  43. Rhee JM, Oda-Ishii I, Passamaneck YJ, Hadjantonakis AK, Di Gregorio A (2005) Live imaging and morphometric analysis of embryonic development in the ascidian Ciona intestinalis. Genesis 43:136–147CrossRefPubMedGoogle Scholar
  44. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498CrossRefPubMedGoogle Scholar
  45. Sasakura Y (2007) Germline transgenesis and insertional mutagenesis in the ascidian Ciona intestinalis. Dev Dyn 236:1758–1767CrossRefPubMedGoogle Scholar
  46. Sasakura Y, Awazu S, Chiba S, Kano S, Satoh N (2003a) Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 308:11–20CrossRefPubMedGoogle Scholar
  47. Sasakura Y, Awazu S, Chiba S, Satoh N (2003b) Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci U S A 100:7726–7730CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J, Satoh N (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 102:15134–15139CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sasakura Y, Oogai Y, Matsuoka T, Satoh N, Awazu S (2007) Transposon-mediated transgenesis in a marine invertebrate chordate, Ciona intestinalis. Genome Biol 8:S3CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sasakura Y, Konno A, Mizuno K, Satoh N, Inaba K (2008) Enhancer detection in the ascidian Ciona intestinalis with transposase-expressing lines of Minos. Dev Dyn 237:39–50CrossRefPubMedGoogle Scholar
  51. Sasakura Y, Suzuki MM, Hozumi A, Inaba K, Satoh N (2010) Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Gen Genomics 283:99–110CrossRefGoogle Scholar
  52. Sasakura Y, Kanda M, Ikeda T, Horie T, Kawai N, Ogura Y, Yoshida R, Hozumi A, Satoh N, Fujiwara S (2012a) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160CrossRefPubMedGoogle Scholar
  53. Sasakura Y, Mita K, Ogura Y, Horie T (2012b) Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Develop Growth Differ 54:420–437CrossRefGoogle Scholar
  54. Shimizu K, Kamba M, Sonobe H, Kanda T, Klinakis AG, Savakis C, Tamura T (2000) Extrachromosomal transposition of the transposable element Minos in embryos of the silkworm Bombyx mori. Insect Mol Biol 9:277–281CrossRefPubMedGoogle Scholar
  55. Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496:363–366CrossRefPubMedGoogle Scholar
  56. Takahashi H, Hotta K, Erives A, Di Gregorio A, Zeller RW, Levine M, Satoh N (1999) Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev 13:1519–1523CrossRefPubMedPubMedCentralGoogle Scholar
  57. Thermes V, Grabher C, Ristratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98CrossRefPubMedGoogle Scholar
  58. Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685CrossRefPubMedGoogle Scholar
  59. Wada H, Saiga H, Satoh N, Holland PWH (1998) Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125:1113–1122PubMedGoogle Scholar
  60. Zeller RW, Weldon DS, Pellatiro MA, Cone AC (2006) Optimized green fluorescent protein variants provide improved single cell resolution of transgenic expression in ascidian embryos. Dev Dyn 235:456–467CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan

Personalised recommendations