Contribution of Variants in CHRNB3/A6 Gene Cluster on Chromosome 8 to Smoking Dependence

  • Ming D. Li


Nicotine, the primary addictive compound in tobacco, plays a vital role in the initiation and maintenance of its use. Nicotine exerts its pharmacological roles through nAChRs, which are ligand-gated ion channels consisting of five membrane-spanning subunits. Besides the CHRNA4, CHRNB2, and CHRNA5/A3/B4 cluster on chromosome 15, recent evidence from both GWAS and candidate gene-based association studies has revealed the crucial roles of the CHRNB3/A6 gene cluster on chromosome 8 in ND. These studies demonstrate two distinct loci within this region. The first is tagged by rs13277254, upstream of the CHRNB3 gene, and the other by rs4952, a coding SNP in exon 5 of that gene. Functional studies by genetic manipulation in mice have shown that α6*-nAChRs (where “*” indicates additional subunits), located in the ventral tegmental area (VTA), are of great importance in controlling nicotine self-administration. However, when the α6 subunit is selectively reexpressed in the VTA of the α6−/− mouse by a lentiviral vector, the reinforcing property of nicotine is restored. To further determine the role of α6*-nAChRs in the process of nicotine-induced reward and withdrawal, genetic knockin (KI) strains have been examined, which showed that replacement of Leu with Ser in the 9′ residue in the M2 domain of α6 produces nicotine-hypersensitive mice (α6L9′S) with enhanced dopamine release. Moreover, nicotine-induced upregulation may contribute to the pathology of nicotine addiction, although the effect of chronic nicotine exposure on the expression of α6-containing receptors remains to be further investigated. This chapter presents the most recent studies concerning the genetic effects of the CHRNB3/A6 gene cluster in ND.


Nicotinic acetylcholine receptors CHRNB3/A6 Knockin Knockout Functional SNPs Association GWAS Candidate gene Minor allele frequency Smoking addiction 



This chapter was modified from the paper published by our group in Translational Psychiatry (Wen et al. 2016, 6:e843). The related contents are reused with the permission.


  1. Azam L, McIntosh JM (2006) Characterization of nicotinic acetylcholine receptors that modulate nicotine-evoked [3H]norepinephrine release from mouse hippocampal synaptosomes. Mol Pharmacol 70(3):967–976CrossRefPubMedGoogle Scholar
  2. Azam L, Winzer-Serhan UH, Chen Y, Leslie FM (2002) Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol 444(3):260–274CrossRefPubMedGoogle Scholar
  3. Bar-Shira A, Gana-Weisz M, Gan-Or Z, Giladi E, Giladi N, Orr-Urtreger A (2014) CHRNB3 c.-57A>G functional promoter change affects Parkinson’s disease and smoking. Neurobiol Aging 35(9):2179 e1–2179 e6CrossRefGoogle Scholar
  4. Bierut LJ (2011) Genetic vulnerability and susceptibility to substance dependence. Neuron 69(4):618–627CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bierut LJ, Madden PA, Breslau N et al (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16(1):24–35CrossRefPubMedGoogle Scholar
  6. Bierut LJ, Stitzel JA, Wang JC et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165(9):1163–1171CrossRefPubMedPubMedCentralGoogle Scholar
  7. Breese CR, Marks MJ, Logel J et al (1997) Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 282(1):7–13PubMedGoogle Scholar
  8. Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the human (alpha)4(beta)2 nicotinic acetylcholine receptor function. J Neurosci 21(6):1819–1829PubMedGoogle Scholar
  9. Champtiaux N, Han ZY, Bessis A et al (2002) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22(4):1208–1217PubMedGoogle Scholar
  10. Champtiaux N, Gotti C, Cordero-Erausquin M et al (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23(21):7820–7829PubMedGoogle Scholar
  11. Cohen BN, Mackey ED, Grady SR et al (2012) Nicotinic cholinergic mechanisms causing elevated dopamine release and abnormal locomotor behavior. Neuroscience 200:31–41CrossRefPubMedGoogle Scholar
  12. Cui C, Booker TK, Allen RS et al (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci Off J Soc Neurosci 23(35):11045–11053Google Scholar
  13. Cui WY, Wang S, Yang J et al (2013) Significant association of CHRNB3 variants with nicotine dependence in multiple ethnic populations. Mol Psychiatry 18(11):1149–1151CrossRefPubMedGoogle Scholar
  14. Culverhouse RC, Johnson EO, Breslau N et al (2014) Multiple distinct CHRNB3-CHRNA6 variants are genetic risk factors for nicotine dependence in African Americans and European Americans. Addiction 109(5):814–822CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dash B, Li MD (2014) Analysis of rare variations reveals roles of amino acid residues in the N-terminal extracellular domain of nicotinic acetylcholine receptor (nAChR) alpha6 subunit in the functional expression of human alpha6*-nAChRs. Mol Brain 7:35CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S (1989) Beta 3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem 264(11):6268–6272PubMedGoogle Scholar
  17. DiFranza JR, Savageau JA, Fletcher K et al (2004) Recollections and repercussions of the first inhaled cigarette. Addict Behav 29(2):261–272CrossRefPubMedGoogle Scholar
  18. Doura MB, Gold AB, Keller AB, Perry DC (2008) Adult and periadolescent rats differ in expression of nicotinic cholinergic receptor subtypes and in the response of these subtypes to chronic nicotine exposure. Brain Res 1215:40–52CrossRefPubMedPubMedCentralGoogle Scholar
  19. Drenan RM, Grady SR, Whiteaker P et al (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60(1):123–136CrossRefPubMedPubMedCentralGoogle Scholar
  20. Drenan RM, Grady SR, Steele AD et al (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J Neurosci Off J Soc Neurosci 30(29):9877–9889CrossRefGoogle Scholar
  21. Ehringer MA, McQueen MB, Hoft NR et al (2010) Association of CHRN genes with “dizziness” to tobacco. Am J Med Genet Part B Neuropsychiatr Genet 153B(2):600–609CrossRefGoogle Scholar
  22. Etter JF, Hoda JC, Perroud N et al (2009) Association of genes coding for the alpha-4, alpha-5, beta-2 and beta-3 subunits of nicotinic receptors with cigarette smoking and nicotine dependence. Addict Behav 34(9):772–775CrossRefPubMedGoogle Scholar
  23. Exley R, Maubourguet N, David V et al (2011) Distinct contributions of nicotinic acetylcholine receptor subunit alpha4 and subunit alpha6 to the reinforcing effects of nicotine. Proc Natl Acad Sci U S A 108(18):7577–7582CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fenster CP, Hicks JH, Beckman ML, Covernton PJ, Quick MW, Lester RA (1999) Desensitization of nicotinic receptors in the central nervous system. Ann N Y Acad Sci 868:620–623CrossRefPubMedGoogle Scholar
  25. Fletcher JM (2012) Why have tobacco control policies stalled? Using genetic moderation to examine policy impacts. PLoS One 7(12):e50576CrossRefPubMedPubMedCentralGoogle Scholar
  26. Flores CM, Davila-Garcia MI, Ulrich YM, Kellar KJ (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. J Neurochem 69(5):2216–2219CrossRefPubMedGoogle Scholar
  27. Forsayeth JR, Kobrin E (1997) Formation of oligomers containing the beta3 and beta4 subunits of the rat nicotinic receptor. J Neurosci 17(5):1531–1538PubMedGoogle Scholar
  28. Gotti C, Moretti M, Clementi F et al (2005) Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 67(6):2007–2015CrossRefPubMedGoogle Scholar
  29. Grady SR, Drenan RM, Breining SR et al (2010) Structural differences determine the relative selectivity of nicotinic compounds for native alpha 4 beta 2*-, alpha 6 beta 2*-, alpha 3 beta 4*- and alpha 7-nicotine acetylcholine receptors. Neuropharmacology 58(7):1054–1066CrossRefPubMedPubMedCentralGoogle Scholar
  30. Greenbaum L, Kanyas K, Karni O et al (2006) Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol Psychiatry 11(3):312–322. 223CrossRefPubMedGoogle Scholar
  31. Haller G, Druley T, Vallania FL et al (2012) Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. Hum Mol Genet 21(3):647–655CrossRefPubMedGoogle Scholar
  32. Haller G, Kapoor M, Budde J et al (2014a) Rare missense variants in CHRNB3 and CHRNA3 are associated with risk of alcohol and cocaine dependence. Hum Mol Genet 23(3):810–819CrossRefPubMedGoogle Scholar
  33. Haller G, Li P, Esch C, Hsu S, Goate AM, Steinbach JH (2014b) Functional characterization improves associations between rare non-synonymous variants in CHRNB4 and smoking behavior. PLoS One 9(5):e96753CrossRefPubMedPubMedCentralGoogle Scholar
  34. Henderson BJ, Srinivasan R, Nichols WA et al (2014) Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. J Gen Physiol 143(1):51–66CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hoft NR, Corley RP, McQueen MB, Schlaepfer IR, Huizinga D, Ehringer MA (2009) Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacology 34(3):698–706CrossRefPubMedGoogle Scholar
  36. Hoft NR, Stitzel JA, Hutchison KE, Ehringer MA (2011) CHRNB2 promoter region: association with subjective effects to nicotine and gene expression differences. Genes Brain Behav 10(2):176–185CrossRefPubMedGoogle Scholar
  37. Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46CrossRefPubMedGoogle Scholar
  38. Hubacek JA, Lanska V, Adamkova V (2014) Lack of an association between SNPs within the cholinergic receptor genes and smoking behavior in a Czech post-MONICA study. Genet Mol Biol 37(4):625–630CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jackson KJ, McIntosh JM, Brunzell DH, Sanjakdar SS, Damaj MI (2009) The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. J Pharmacol Exp Ther 331(2):547–554CrossRefPubMedPubMedCentralGoogle Scholar
  40. Johnson EO, Chen LS, Breslau N et al (2010) Peer smoking and the nicotinic receptor genes: an examination of genetic and environmental risks for nicotine dependence. Addiction 105(11):2014–2022CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kamens HM, Miyamoto J, Powers MS et al (2015) The beta3 subunit of the nicotinic acetylcholine receptor: modulation of gene expression and nicotine consumption. Neuropharmacology 99:639–649CrossRefPubMedPubMedCentralGoogle Scholar
  42. Keskitalo-Vuokko K, Pitkaniemi J, Broms U et al (2011) Associations of nicotine intake measures with CHRN genes in Finnish smokers. Nicotine Tob Res 13(8):686–690CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lai A, Parameswaran N, Khwaja M et al (2005) Long-term nicotine treatment decreases striatal alpha 6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 67(5):1639–1647CrossRefPubMedGoogle Scholar
  44. Landgren S, Berglund K, Jerlhag E et al (2011) Reward-related genes and personality traits in alcohol-dependent individuals: a pilot case control study. Neuropsychobiology 64(1):38–46CrossRefPubMedGoogle Scholar
  45. Le Novere N, Zoli M, Changeux JP (1996) Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8(11):2428–2439CrossRefPubMedGoogle Scholar
  46. Lee CT, Fuemmeler BF, McClernon FJ, Ashley-Koch A, Kollins SH (2013) Nicotinic receptor gene variants interact with attention deficient hyperactive disorder symptoms to predict smoking trajectories from early adolescence to adulthood. Addict Behav 38(11):2683–2689CrossRefPubMedGoogle Scholar
  47. Lester HA, Xiao C, Srinivasan R et al (2009) Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J 11(1):167–177CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mackey ED, Engle SE, Kim MR et al (2012) alpha6* nicotinic acetylcholine receptor expression and function in a visual salience circuit. J Neurosci Off J Soc Neurosci 32(30):10226–10237CrossRefGoogle Scholar
  49. Marks MJ, Pauly JR, Gross SD et al (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 12(7):2765–2784PubMedGoogle Scholar
  50. Marks MJ, Grady SR, Salminen O et al (2014) alpha6beta2*-subtype nicotinic acetylcholine receptors are more sensitive than alpha4beta2*-subtype receptors to regulation by chronic nicotine administration. J Neurochem 130(2):185–198CrossRefPubMedPubMedCentralGoogle Scholar
  51. McCallum SE, Parameswaran N, Bordia T, McIntosh JM, Grady SR, Quik M (2005) Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Mol Pharmacol 68(3):737–746PubMedGoogle Scholar
  52. McCallum SE, Parameswaran N, Bordia T, Fan H, McIntosh JM, Quik M (2006) Differential regulation of mesolimbic alpha 3/alpha 6 beta 2 and alpha 4 beta 2 nicotinic acetylcholine receptor sites and function after long-term oral nicotine to monkeys. J Pharmacol Exp Ther 318(1):381–388CrossRefPubMedGoogle Scholar
  53. Mugnaini M, Garzotti M, Sartori I et al (2006) Selective down-regulation of [(125)I]Y0-alpha-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience 137(2):565–572CrossRefPubMedGoogle Scholar
  54. Nguyen HN, Rasmussen BA, Perry DC (2003) Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther 307(3):1090–1097CrossRefPubMedGoogle Scholar
  55. Parker SL, Fu Y, McAllen K et al (2004) Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: disproportionate increase of the alpha6 subunit. Mol Pharmacol 65(3):611–622CrossRefPubMedGoogle Scholar
  56. Pedneault M, Labbe A, Roy-Gagnon MH et al (2014) The association between CHRN genetic variants and dizziness at first inhalation of cigarette smoke. Addict Behav 39(1):316–320CrossRefPubMedGoogle Scholar
  57. Perez XA, Bordia T, McIntosh JM, Grady SR, Quik M (2008) Long-term nicotine treatment differentially regulates striatal alpha6alpha4beta2* and alpha6(nonalpha4)beta2* nAChR expression and function. Mol Pharmacol 74(3):844–853CrossRefPubMedPubMedCentralGoogle Scholar
  58. Perez XA, O’Leary KT, Parameswaran N, McIntosh JM, Quik M (2009) Prominent role of alpha3/alpha6beta2* nAChRs in regulating evoked dopamine release in primate putamen: effect of long-term nicotine treatment. Mol Pharmacol 75(4):938–946CrossRefPubMedPubMedCentralGoogle Scholar
  59. Perez XA, Ly J, McIntosh JM, Quik M (2012) Long-term nicotine exposure depresses dopamine release in nonhuman primate nucleus accumbens. J Pharmacol Exp Ther 342(2):335–344CrossRefPubMedPubMedCentralGoogle Scholar
  60. Perez XA, McIntosh JM, Quik M (2013) Long-term nicotine treatment down-regulates alpha6beta2* nicotinic receptor expression and function in nucleus accumbens. J Neurochem 127:762–771. CrossRefPubMedGoogle Scholar
  61. Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ (1999) Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 289(3):1545–1552PubMedGoogle Scholar
  62. Perry DC, Mao D, Gold AB, McIntosh JM, Pezzullo JC, Kellar KJ (2007) Chronic nicotine differentially regulates alpha6- and beta3-containing nicotinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 322(1):306–315CrossRefPubMedGoogle Scholar
  63. Picciotto MR, Addy NA, Mineur YS, Brunzell DH (2008) It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84(4):329–342CrossRefPubMedGoogle Scholar
  64. Pomerleau OF, Pomerleau CS, Mehringer AM, Snedecor SM, Cameron OG (2005) Validation of retrospective reports of early experiences with smoking. Addict Behav 30(3):607–611CrossRefPubMedGoogle Scholar
  65. Pons S, Fattore L, Cossu G et al (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28(47):12318–12327CrossRefPubMedPubMedCentralGoogle Scholar
  66. Powers MS, Broderick HJ, Drenan RM, Chester JA (2013) Nicotinic acetylcholine receptors containing alpha6 subunits contribute to alcohol reward-related behaviours. Genes Brain Behav 12(5):543–553CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rice JP, Hartz SM, Agrawal A et al (2012) CHRNB3 is more strongly associated with Fagerstrom test for cigarette dependence-based nicotine dependence than cigarettes per day: phenotype definition changes genome-wide association studies results. Addiction 107(11):2019–2028CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rogers SW, Gahring LC, Collins AC, Marks M (1998) Age-related changes in neuronal nicotinic acetylcholine receptor subunit alpha4 expression are modified by long-term nicotine administration. J Neurosci 18(13):4825–4832PubMedGoogle Scholar
  69. Rose JE (2007) Multiple brain pathways and receptors underlying tobacco addiction. Biochem Pharmacol 74(8):1263–1270CrossRefPubMedGoogle Scholar
  70. Ryan RE, Ross SA, Drago J, Loiacono RE (2001) Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br J Pharmacol 132(8):1650–1656CrossRefPubMedPubMedCentralGoogle Scholar
  71. Saccone SF, Hinrichs AL, Saccone NL et al (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16(1):36–49CrossRefPubMedGoogle Scholar
  72. Saccone NL, Saccone SF, Hinrichs AL et al (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 150B(4):453–466CrossRefPubMedPubMedCentralGoogle Scholar
  73. Saccone NL, Schwantes-An TH, Wang JC et al (2010) Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav 9(7):741–750CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sanjakdar SS, Maldoon PP, Marks MJ et al (2015) Differential roles of alpha6beta2* and alpha4beta2* neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice. Neuropsychopharmacol 40(2):350–360CrossRefGoogle Scholar
  75. Sparks JA, Pauly JR (1999) Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57Bl/6 mice. Psychopharmacology 141(2):145–153CrossRefPubMedGoogle Scholar
  76. Srinivasan R, Henderson BJ, Lester HA, Richards CI (2014) Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson’s disease. Pharmacol Res Off J Ital Pharmacol Soc 83:20–29Google Scholar
  77. Stevens VL, Bierut LJ, Talbot JT et al (2008) Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomark Prev 17(12):3517–3525CrossRefGoogle Scholar
  78. Thorgeirsson TE, Gudbjartsson DF, Surakka I et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42(5):448–453CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tumkosit P, Kuryatov A, Luo J, Lindstrom J (2006) Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines. Mol Pharmacol 70(4):1358–1368CrossRefPubMedGoogle Scholar
  80. Vailati S, Moretti M, Balestra B, McIntosh M, Clementi F, Gotti C (2000) beta3 subunit is present in different nicotinic receptor subtypes in chick retina. Eur J Pharmacol 393(1–3):23–30CrossRefPubMedGoogle Scholar
  81. Walsh H, Govind AP, Mastro R et al (2008) Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. J Biol Chem 283(10):6022–6032CrossRefPubMedGoogle Scholar
  82. Wang Y, Lee JW, Oh G et al (2014a) Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function alpha6* nAChRs. J Neurochem 129(2):315–327CrossRefPubMedGoogle Scholar
  83. Wang S, DvdV A, Xu Q et al (2014b) Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations. Hum Genet 133(5):575–586CrossRefPubMedGoogle Scholar
  84. Waters AJ, Shiffman S, Sayette MA, Paty JA, Gwaltney CJ, Balabanis MH (2003) Attentional bias predicts outcome in smoking cessation. Health Psychol 22(4):378–387CrossRefPubMedPubMedCentralGoogle Scholar
  85. Webster JC, Francis MM, Porter JK et al (1999) Antagonist activities of mecamylamine and nicotine show reciprocal dependence on beta subunit sequence in the second transmembrane domain. Br J Pharmacol 127(6):1337–1348CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wei J, Chu C, Wang Y et al (2012) Association study of 45 candidate genes in nicotine dependence in Han Chinese. Addict Behav 37(5):622–626CrossRefPubMedGoogle Scholar
  87. Wen L, Jiang K, Yuan W, Cui W, Li MD (2016) Contribution of variants in CHRNA5/A3/B4 gene cluster on chromosome 15 to tobacco smoking: from genetic association to mechanism. Mol Neurobiol 53:472–484. CrossRefPubMedGoogle Scholar
  88. Won WY, Park B, Choi SW et al (2014) Genetic association of CHRNB3 and CHRNA6 gene polymorphisms with nicotine dependence syndrome scale in Korean population. Psychiatry Invest 11(3):307–312CrossRefGoogle Scholar
  89. Wooltorton JR, Pidoplichko VI, Broide RS, Dani JA (2003) Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 23(8):3176–3185PubMedGoogle Scholar
  90. Zeiger JS, Haberstick BC, Schlaepfer I et al (2008) The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Hum Mol Genet 17(5):724–734CrossRefPubMedGoogle Scholar
  91. Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci Off J Soc Neurosci 22(20):8785–8789Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ming D. Li
    • 1
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Zhejiang UniversityHangzhouChina

Personalised recommendations