Neuroproteomics and Its Applications in Research on Nicotine and Other Drugs of Abuse

  • Ming D. Li


The rapidly growing field of neuroproteomics is able to track changes in protein expression and the protein modifications underlying various physiological conditions, including the neural diseases related to drug addiction. Thus, it presents great promise in characterizing protein function, biochemical pathways, and networks to understand the mechanisms of drug dependence. In this chapter, we first provide an overview of proteomics technologies and the bioinformatics tools available to analyze the data. Then we summarize the recent applications of proteomics to profile the protein expression pattern in animal or human brain tissues after the administration of nicotine, alcohol, amphetamine, butorphanol, cocaine, and morphine. By comparing the protein expression profiles in response to chronic nicotine exposure with those appearing in response to treatment with other drugs of abuse, we identified three biological processes that appear to be regulated by multiple drugs of abuse: energy metabolism, oxidative stress response, and protein degradation and modification. Such similarity indicates that despite the obvious differences among their chemical properties and the receptors with which they interact, different substances of abuse may cause some similar changes in cellular activities and biological processes in neurons.


Neuroproteomics Proteomics Addiction Pathways Amygdala Nucleus accumbens Prefrontal cortex Striatum Ventral tegmental area Nicotine Alcohol Amphetamine Butorphanol Cocaine Morphine Parkinson’s disease Alzheimer’s disease 



This chapter was modified from a paper reported by our group in Molecular Neurobiology (Wang et al. 2011; 44:269–286). The related contents are reused with permission.


  1. Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120:2081–2090PubMedGoogle Scholar
  2. Alexander-Kaufman K, James G, Sheedy D, Harper C, Matsumoto I (2006) Differential protein expression in the prefrontal white matter of human alcoholics: a proteomics study. Mol Psychiatry 11:56–65PubMedCrossRefGoogle Scholar
  3. Asaka M, Kimura T, Meguro T, Kato M, Kudo M, Miyazaki T, Alpert E (1994) Alteration of aldolase isozymes in serum and tissues of patients with cancer and other diseases. J Clin Lab Anal 8:144–148PubMedCrossRefGoogle Scholar
  4. Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B (1997) Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324(Pt 1):25–28PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bahi A, Dreyer JL (2005) Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol Cell Neurosci 28:275–291PubMedCrossRefGoogle Scholar
  6. Ball ST, Moseley HJ, Peters J (1994) Mor2, supernatant malate dehydrogenase, is linked to wa2 and Hba on mouse chromosome 11 in a region of homology with human chromosome 2p. Genomics 24:399–400PubMedCrossRefGoogle Scholar
  7. Barbieri RL, Friedman AJ, Osathanondh R (1989) Cotinine and nicotine inhibit human fetal adrenal 11 beta-hydroxylase. J Clin Endocrinol Metab 69:1221–1224PubMedCrossRefGoogle Scholar
  8. Bashkatova V, Meunier J, Maurice T, Vanin A (2005) Memory impairments and oxidative stress in the hippocampus of in-utero cocaine-exposed rats. Neuroreport 16:1217–1221PubMedCrossRefGoogle Scholar
  9. Bashkatova V, Meunier J, Vanin A, Maurice T (2006) Nitric oxide and oxidative stress in the brain of rats exposed in utero to cocaine. Ann N Y Acad Sci 1074:632–642PubMedCrossRefGoogle Scholar
  10. Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 7:1442–1449PubMedCrossRefGoogle Scholar
  11. Bell RL, Kimpel MW, Rodd ZA, Strother WN, Bai F, Peper CL, Mayfield RD, Lumeng L, Crabb DW, McBride WJ, Witzmann FA (2006) Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol. Alcohol 40:3–17PubMedCrossRefGoogle Scholar
  12. Berardini TZ, Drygas-Williams M, Callard GV, Tolan DR (1997) Identification of neuronal isozyme specific residues by comparison of goldfish aldolase C to other aldolases. Comp Biochem Physiol A Physiol 117:471–476PubMedCrossRefGoogle Scholar
  13. Berry RM (2005) ATP synthesis: the world’s smallest wind-up toy. Curr Biol 15:R385–R387PubMedCrossRefGoogle Scholar
  14. Bierczynska-Krzysik A, Bonar E, Drabik A, Noga M, Suder P, Dylag T, Dubin A, Kotlinska J, Silberring J (2006) Rat brain proteome in morphine dependence. Neurochem Int 49:401–406PubMedCrossRefGoogle Scholar
  15. Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM (2000) Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol 60:615–623PubMedCrossRefGoogle Scholar
  16. Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53PubMedCrossRefGoogle Scholar
  17. Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215PubMedCrossRefGoogle Scholar
  18. Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305:242–245PubMedCrossRefGoogle Scholar
  19. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060PubMedCrossRefGoogle Scholar
  20. Butterfield LH, Merino A, Golub SH, Shau H (1999) From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal 1:385–402PubMedCrossRefGoogle Scholar
  21. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50PubMedCrossRefGoogle Scholar
  22. Calabrese V, Testa G, Ravagna A, Bates TE, Stella AM (2000) HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem Biophys Res Commun 269:397–400PubMedCrossRefGoogle Scholar
  23. Canete-Soler R, Reddy KS, Tolan DR, Zhai J (2005) Aldolases a and C are ribonucleolytic components of a neuronal complex that regulates the stability of the light-neurofilament mRNA. J Neurosci 25:4353–4364PubMedCrossRefGoogle Scholar
  24. Canoz O, Gunes T, Deniz K, Akgun H, Balkanli S (2006) Perinatal expression of HSP70 and VEGF in neonatal rat lung vessels exposed to nicotine during gestation. APMIS 114:10–14PubMedCrossRefGoogle Scholar
  25. Carboni L, Vighini M, Piubelli C, Castelletti L, Milli A, Domenici E (2006) Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. Eur Neuropsychopharmacol 16:521–537PubMedCrossRefGoogle Scholar
  26. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563PubMedCrossRefGoogle Scholar
  27. Cecconi D, Mion S, Astner H, Domenici E, Righetti PG, Carboni L (2007) Proteomic analysis of rat cortical neurons after fluoxetine treatment. Brain Res 1135:41–51PubMedCrossRefGoogle Scholar
  28. Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678PubMedGoogle Scholar
  29. Chen XJ, Wang X, Kaufman BA, Butow RA (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307:714–717PubMedCrossRefGoogle Scholar
  30. Claverie JM (2005) Fewer genes, more noncoding RNA. Science 309:1529–1530PubMedCrossRefGoogle Scholar
  31. Cooper CA, Joshi HJ, Harrison MJ, Wilkins MR, Packer NH (2003) GlycoSuiteDB: a curated relational database of glycoprotein glycan structures and their biological sources. 2003 update. Nucleic Acids Res 31:511–513PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cormier A, Morin C, Zini R, Tillement JP, Lagrue G (2001) In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation. Brain Res 900:72–79PubMedCrossRefGoogle Scholar
  33. Cormier A, Morin C, Zini R, Tillement JP, Lagrue G (2003) Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology 44:642–652PubMedCrossRefGoogle Scholar
  34. Cox TM (1994) Aldolase B and fructose intolerance. FASEB J 8:62–71PubMedCrossRefGoogle Scholar
  35. Cunha-Oliveira T, Rego AC, Cardoso SM, Borges F, Swerdlow RH, Macedo T, de Oliveira CR (2006) Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res 1089:44–54PubMedCrossRefGoogle Scholar
  36. Cunha-Oliveira T, Rego AC, Garrido J, Borges F, Macedo T, Oliveira CR (2007) Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons. J Neurochem 101(2):543–554PubMedCrossRefGoogle Scholar
  37. Damodaran S, Dlugos CA, Wood TD, Rabin RA (2006) Effects of chronic ethanol administration on brain protein levels: a proteomic investigation using 2-D DIGE system. Eur J Pharmacol 547:75–82PubMedCrossRefGoogle Scholar
  38. Das KC, Pahl PM, Guo XL, White CW (2001) Induction of peroxiredoxin gene expression by oxygen in lungs of newborn primates. Am J Respir Cell Mol Biol 25:226–232PubMedCrossRefGoogle Scholar
  39. Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev 36:1–22PubMedCrossRefGoogle Scholar
  40. Dietrich JB, Mangeol A, Revel MO, Burgun C, Aunis D, Zwiller J (2005) Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 48:965–974PubMedCrossRefGoogle Scholar
  41. DiMauro S, Bruno C (1998) Glycogen storage diseases of muscle. Curr Opin Neurol 11:477–484PubMedCrossRefGoogle Scholar
  42. Donohue TM Jr, Osna NA (2003) Intracellular proteolytic systems in alcohol-induced tissue injury. Alcohol Res Health 27:317–324PubMedGoogle Scholar
  43. Drakenberg K, Nikoshkov A, Horvath MC, Fagergren P, Gharibyan A, Saarelainen K, Rahman S, Nylander I, Bakalkin G, Rajs J, Keller E, Hurd YL (2006) Mu opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Natl Acad Sci U S A 103:7883–7888PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dunckley T, Lukas RJ (2003) Nicotine modulates the expression of a diverse set of genes in the neuronal SH-SY5Y cell line. J Biol Chem 278:15633–15640PubMedCrossRefGoogle Scholar
  45. Fillingame RH, Angevine CM, Dmitriev OY (2003) Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett 555:29–34PubMedCrossRefGoogle Scholar
  46. Fountoulakis M (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrom Rev 23:231–258PubMedCrossRefGoogle Scholar
  47. Freeman WM, Brebner K, Amara SG, Reed MS, Pohl J, Phillips AG (2005) Distinct proteomic profiles of amphetamine self-administration transitional states. Pharmacogenomics J 5:203–214PubMedCrossRefGoogle Scholar
  48. Fujii J, Ikeda Y (2002) Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 7:123–130PubMedCrossRefGoogle Scholar
  49. Gabbita SP, Lovell MA, Markesbery WR (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71:2034–2040PubMedCrossRefGoogle Scholar
  50. Galvin RJ, Ramp WK, Lenz LG (1988) Smokeless tobacco contains a nonnicotine inhibitor of bone metabolism. Toxicol Appl Pharmacol 95:292–300PubMedCrossRefGoogle Scholar
  51. Garavelli JS (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics 4:1527–1533PubMedCrossRefGoogle Scholar
  52. Gerner C, Frohwein U, Gotzmann J, Bayer E, Gelbmann D, Bursch W, Schulte-Hermann R (2000) The Fas-induced apoptosis analyzed by high throughput proteome analysis. J Biol Chem 275:39018–39026PubMedCrossRefGoogle Scholar
  53. Goodlett CR, Horn KH (2001) Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 25:175–184PubMedGoogle Scholar
  54. Goodlett CR, Horn KH, Zhou FC (2005) Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood) 230:394–406CrossRefGoogle Scholar
  55. Gutala R, Wang J, Kadapakkam S, Hwang Y, Ticku M, Li MD (2004) Microarray analysis of ethanol-treated cortical neurons reveals disruption of genes related to the ubiquitin-proteasome pathway and protein synthesis. Alcohol Clin Exp Res 28:1779–1788PubMedCrossRefGoogle Scholar
  56. Guzman DC, Vazquez IE, Brizuela NO, Alvarez RG, Mejia GB, Garcia EH, Santamaria D, de Apreza MR, Olguin HJ (2006) Assessment of oxidative damage induced by acute doses of morphine sulfate in postnatal and adult rat brain. Neurochem Res 31:549–554PubMedCrossRefGoogle Scholar
  57. Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2: RESEARCH0004.Google Scholar
  58. Hajnoczky G, Buzas CJ, Pacher P, Hoek JB, Rubin E (2005) Alcohol and mitochondria in cardiac apoptosis: mechanisms and visualization. Alcohol Clin Exp Res 29:693–701PubMedCrossRefGoogle Scholar
  59. Harada S, Fujii C, Hayashi A, Ohkoshi N (2001) An association between idiopathic Parkinson’s disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase M1 and quinone oxidoreductase 1 and 2. Biochem Biophys Res Commun 288:887–892PubMedCrossRefGoogle Scholar
  60. Hemby SE (2006) Assessment of genome and proteome profiles in cocaine abuse. Prog Brain Res 158:173–195PubMedPubMedCentralCrossRefGoogle Scholar
  61. Huber LA (2003) Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol 4:74–80PubMedCrossRefGoogle Scholar
  62. Husain K, Scott BR, Reddy SK, Somani SM (2001) Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol 25:89–97PubMedCrossRefGoogle Scholar
  63. Hwang YY, Li MD (2006) Proteins differentially expressed in response to nicotine in five rat brain regions: identification using a 2-DE/MS-based proteomics approach. Proteomics 6:3138–3153PubMedCrossRefGoogle Scholar
  64. Iacovelli L, Fulceri F, De Blasi A, Nicoletti F, Ruggieri S, Fornai F (2006) The neurotoxicity of amphetamines: bridging drugs of abuse and neurodegenerative disorders. Exp Neurol 201:24–31PubMedCrossRefGoogle Scholar
  65. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029PubMedCrossRefGoogle Scholar
  66. Iwazaki T, McGregor IS, Matsumoto I (2006) Protein expression profile in the striatum of acute methamphetamine-treated rats. Brain Res 1097:19–25PubMedCrossRefGoogle Scholar
  67. Jin Z, Roomans GM (1997) Effects of nicotine on the uterine epithelium studied by X-ray microanalysis. J Submicrosc Cytol Pathol 29:179–186PubMedGoogle Scholar
  68. Kanamoto T, Hellman U, Heldin CH, Souchelnytskyi S (2002) Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair. Embo J 21:1219–1230PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kane JK, Konu O, Ma JZ, Li MD (2004) Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. Brain Res Mol Brain Res 132:181–191. PubMedCrossRefGoogle Scholar
  70. Katyare SS, Shallom JM (1988) Altered cerebral protein turnover in rats following prolonged in vivo treatment with nicotine. J Neurochem 50:1356–1363PubMedCrossRefGoogle Scholar
  71. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 25:2255–2266PubMedCrossRefGoogle Scholar
  72. Khawaja X, Xu J, Liang JJ, Barrett JE (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: implications for depressive disorders and future therapies. J Neurosci Res 75:451–460PubMedCrossRefGoogle Scholar
  73. Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK, Kwon OY, Kim YK, Ro HK, Shong M (2000) Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J Biol Chem 275:18266–18270PubMedCrossRefGoogle Scholar
  74. Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ (2004) Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem Res 29:1317–1331PubMedCrossRefGoogle Scholar
  75. Kim SY, Chudapongse N, Lee SM, Levin MC, Oh JT, Park HJ, Ho IK (2005) Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Brain Res Mol Brain Res 133:58–70PubMedCrossRefGoogle Scholar
  76. Konu O, Kane JK, Barrett T, Vawter MP, Chang R, Ma JZ, Donovan DM, Sharp B, Becker KG, Li MD (2001) Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res 909:194–203PubMedPubMedCentralCrossRefGoogle Scholar
  77. Konu O, Xu X, Ma JZ, Kane J, Wang J, Shi SJ, Li MD (2004) Application of a customized pathway-focused microarray for gene expression profiling of cellular homeostasis upon exposure to nicotine in PC12 cells. Brain Res Mol Brain Res 121:102–113. PubMedCrossRefGoogle Scholar
  78. Kreuder J, Borkhardt A, Repp R, Pekrun A, Gottsche B, Gottschalk U, Reichmann H, Schachenmayr W, Schlegel K, Lampert F (1996) Brief report: inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N Engl J Med 334:1100–1104PubMedCrossRefGoogle Scholar
  79. La Y, Wan C, Zhu H, Yang Y, Chen Y, Pan Y, Ji B, Feng G, He L (2006) Hippocampus protein profiling reveals aberration of malate dehydrogenase in chlorpromazine/clozapine treated rats. Neurosci Lett 408:29–34PubMedCrossRefGoogle Scholar
  80. Lad RP, Smith MA, Hilt DC (1991) Molecular cloning and regional distribution of rat brain cyclophilin. Brain Res Mol Brain Res 9:239–244PubMedCrossRefGoogle Scholar
  81. LaPorte DC (1993) The isocitrate dehydrogenase phosphorylation cycle: regulation and enzymology. J Cell Biochem 51:14–18PubMedCrossRefGoogle Scholar
  82. Lefrancois-Martinez AM, Bertherat J, Val P, Tournaire C, Gallo-Payet N, Hyndman D, Veyssiere G, Bertagna X, Jean C, Martinez A (2004) Decreased expression of cyclic adenosine monophosphate-regulated aldose reductase (AKR1B1) is associated with malignancy in human sporadic adrenocortical tumors. J Clin Endocrinol Metab 89:3010–3019PubMedCrossRefGoogle Scholar
  83. Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM, Nahreini TS, Resing KA, Ahn NG (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6:1343–1354PubMedCrossRefGoogle Scholar
  84. Lewohl JM, Van Dyk DD, Craft GE, Innes DJ, Mayfield RD, Cobon G, Harris RA, Dodd PR (2004) The application of proteomics to the human alcoholic brain. Ann N Y Acad Sci 1025:14–26PubMedCrossRefGoogle Scholar
  85. Li MD, Konu O, Kane JK, Becker KG (2002) Microarray technology and its application on nicotine research. Mol Neurobiol 25:265–285. PubMedCrossRefGoogle Scholar
  86. Li MD, Kane JK, Wang J, Ma JZ (2004) Time-dependent changes in transcriptional profiles within five rat brain regions in response to nicotine treatment. Brain Res Mol Brain Res 132:168–180. PubMedCrossRefGoogle Scholar
  87. Li KW, Jimenez CR, van der Schors RC, Hornshaw MP, Schoffelmeer AN, Smit AB (2006) Intermittent administration of morphine alters protein expression in rat nucleus accumbens. Proteomics 6:2003–2008PubMedCrossRefGoogle Scholar
  88. Liebler DC (2002) Proteomic approaches to characterize protein modifications: new tools to study the effects of environmental exposures. Environ Health Perspect 110(Suppl 1):3–9PubMedPubMedCentralCrossRefGoogle Scholar
  89. Linke S, Goertz P, Baader SL, Gieselmann V, Siebler M, Junghans U, Kappler J (2006) Aldolase C/zebrin II is released to the extracellular space after stroke and inhibits the network activity of cortical neurons. Neurochem Res 31:1297–1303PubMedCrossRefGoogle Scholar
  90. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRefGoogle Scholar
  91. Mastronicola D, Arcuri E, Arese M, Bacchi A, Mercadante S, Cardelli P, Citro G, Sarti P (2004) Morphine but not fentanyl and methadone affects mitochondrial membrane potential by inducing nitric oxide release in glioma cells. Cell Mol Life Sci 61:2991–2997PubMedCrossRefGoogle Scholar
  92. McClung CA, Nestler EJ, Zachariou V (2005) Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 25:6005–6015PubMedCrossRefGoogle Scholar
  93. Mendes Soares LM, Valcarcel J (2006) The expanding transcriptome: the genome as the ‘Book of Sand’. Embo J 25:923–931PubMedPubMedCentralCrossRefGoogle Scholar
  94. Miller MC 3rd, Mohrenweiser HW, Bell DA (2001) Genetic variability in susceptibility and response to toxicants. Toxicol Lett 120:269–280PubMedCrossRefGoogle Scholar
  95. Miller EK, Raese JD, Morrison-Bogorad M (1991) Expression of heat shock protein 70 and heat shock cognate 70 messenger RNAs in rat cortex and cerebellum after heat shock or amphetamine treatment. J Neurochem 56:2060–2071PubMedCrossRefGoogle Scholar
  96. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, Teh BS, Haab BB (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3:56–63PubMedCrossRefGoogle Scholar
  97. Mizusawa H, Ishii T, Bannai S (2000) Peroxiredoxin I (macrophage 23 kDa stress protein) is highly and widely expressed in the rat nervous system. Neurosci Lett 283:57–60PubMedCrossRefGoogle Scholar
  98. Mor F, Izak M, Cohen IR (2005) Identification of aldolase as a target antigen in Alzheimer’s disease. J Immunol 175:3439–3445PubMedCrossRefGoogle Scholar
  99. Morrison RS, Kinoshita Y, Johnson MD, Uo T, Ho JT, McBee JK, Conrads TP, Veenstra TD (2002) Proteomic analysis in the neurosciences. Mol Cell Proteomic 1:553–560CrossRefGoogle Scholar
  100. Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER (1996) Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem 271:15315–15321CrossRefGoogle Scholar
  101. Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics. Drugs Aging 11:206–228PubMedCrossRefGoogle Scholar
  102. Newman MB, Arendash GW, Shytle RD, Bickford PC, Tighe T, Sanberg PR (2002) Nicotine’s oxidative and antioxidant properties in CNS. Life Sci 71:2807–2820PubMedCrossRefGoogle Scholar
  103. Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci U S A 100:9330–9335PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786PubMedCrossRefGoogle Scholar
  105. Novikova SI, He F, Bai J, Badan I, Lidow IA, Lidow MS (2005) Cocaine-induced changes in the expression of apoptosis-related genes in the fetal mouse cerebral wall. Neurotoxicol Teratol 27:3–14PubMedCrossRefGoogle Scholar
  106. Nunomura A, Perry G, Hirai K, Aliev G, Takeda A, Chiba S, Smith MA (1999) Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann N Y Acad Sci 893:362–364PubMedCrossRefGoogle Scholar
  107. O’Brien E, Dedova I, Duffy L, Cordwell S, Karl T, Matsumoto I (2006) Effects of chronic risperidone treatment on the striatal protein profiles in rats. Brain Res 1113:24–32PubMedCrossRefGoogle Scholar
  108. Oliveira MT, Rego AC, Macedo TR, Oliveira CR (2003) Drugs of abuse induce apoptotic features in PC12 cells. Ann N Y Acad Sci 1010:667–670PubMedCrossRefGoogle Scholar
  109. Onal A, Uysal A, Ulker S, Delen Y, Yurtseven ME, Evinc A (2004) Alterations of brain tissue in fetal rats exposed to nicotine in utero: possible involvement of nitric oxide and catecholamines. Neurotoxicol Teratol 26:103–112PubMedCrossRefGoogle Scholar
  110. Ozmen I, Naziroglu M, Alici HA, Sahin F, Cengiz M, Eren I (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res 32:19–25PubMedCrossRefGoogle Scholar
  111. Park B, Jeong SK, Lee WS, Seong JK, Paik YK (2004) A simple pattern classification method for alcohol-responsive proteins that are differentially expressed in mouse brain. Proteomics 4:3369–3375PubMedCrossRefGoogle Scholar
  112. Paulson L, Martin P, Ljung E, Blennow K, Davidsson P (2007) Proteome analysis after co-administration of clozapine or haloperidol to MK-801-treated rats. J Neural Transm 114(7):885–891PubMedCrossRefGoogle Scholar
  113. Peshenko IV, Shichi H (2001) Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med 31:292–303PubMedCrossRefGoogle Scholar
  114. Pollock JD (2002) Gene expression profiling: methodological challenges, results, and prospects for addiction research. Chem Phys Lipids 121:241–256PubMedCrossRefGoogle Scholar
  115. Poon HF, Abdullah L, Mullan MA, Mullan MJ, Crawford FC (2007) Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochem Int 50:69–73PubMedCrossRefGoogle Scholar
  116. Predic J, Soskic V, Bradley D, Godovac-Zimmermann J (2002) Monitoring of gene expression by functional proteomics: response of human lung fibroblast cells to stimulation by endothelin-1. Biochemistry 41:1070–1078PubMedCrossRefGoogle Scholar
  117. Prokai L, Zharikova AD, Stevens SM Jr (2005) Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. J Mass Spectrom 40:169–175PubMedCrossRefGoogle Scholar
  118. Ramachandran V, Perez A, Chen J, Senthil D, Schenker S, Henderson GI (2001) In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin Exp Res 25:862–871PubMedCrossRefGoogle Scholar
  119. Rambhia S, Mantione KJ, Stefano GB, Cadet P (2005) Morphine modulation of the ubiquitin-proteasome complex is neuroprotective. Med Sci Monit 11:BR386–BR396PubMedGoogle Scholar
  120. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552PubMedCrossRefGoogle Scholar
  121. Rhodes JS, Crabbe JC (2005) Gene expression induced by drugs of abuse. Curr Opin Pharmacol 5:26–33PubMedCrossRefGoogle Scholar
  122. Santt O, Baranova H, Albuisson E, Bignon YJ, Lucotte G (2004) Interaction between GSTM1-null and CYP2D6-deficient alleles in the pathogenesis of Parkinson’s disease. Eur J Neurol 11:247–251PubMedCrossRefGoogle Scholar
  123. Sarafian TA, Verity MA, Vinters HV, Shih CC, Shi L, Ji XD, Dong L, Shau H (1999) Differential expression of peroxiredoxin subtypes in human brain cell types. J Neurosci Res 56:206–212PubMedCrossRefGoogle Scholar
  124. Schmid FX (2001) Prolyl isomerases. Adv Protein Chem 59:243–282PubMedCrossRefGoogle Scholar
  125. Sener G, Sehirli O, Ipci Y, Cetinel S, Cikler E, Gedik N, Alican I (2005) Protective effects of taurine against nicotine-induced oxidative damage of rat urinary bladder and kidney. Pharmacology 74:37–44PubMedCrossRefGoogle Scholar
  126. Shadel GS (2005) Mitochondrial DNA, aconitase ‘wraps’ it up. Trends Biochem Sci 30:294–296PubMedCrossRefGoogle Scholar
  127. Sharp FR, Massa SM, Swanson RA (1999) Heat-shock protein protection. Trends Neurosci 22:97–99PubMedCrossRefGoogle Scholar
  128. Slotkin TA, Seidler FJ, Qiao D, Aldridge JE, Tate CA, Cousins MM, Proskocil BJ, Sekhon HS, Clark JA, Lupo SL, Spindel ER (2005) Effects of prenatal nicotine exposure on primate brain development and attempted amelioration with supplemental choline or vitamin C: neurotransmitter receptors, cell signaling and cell development biomarkers in fetal brain regions of rhesus monkeys. Neuropsychopharmacology 30:129–144PubMedCrossRefGoogle Scholar
  129. Sokolov BP, Jiang L, Trivedi NS, Aston C (2003) Transcription profiling reveals mitochondrial, ubiquitin and signaling systems abnormalities in postmortem brains from subjects with a history of alcohol abuse or dependence. J Neurosci Res 72:756–767PubMedCrossRefGoogle Scholar
  130. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garcia JL (2002) Effects of (-)-nicotine and (-)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem Pharmacol 64:125–135PubMedCrossRefGoogle Scholar
  131. Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM (2001) Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res 61:7585–7593PubMedGoogle Scholar
  132. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258PubMedCrossRefGoogle Scholar
  133. Stefanizzi I, Canete-Soler R (2007) Coregulation of light neurofilament mRNA by poly(A)-binding protein and aldolase C: implications for neurodegeneration. Brain Res 1139:15–28PubMedCrossRefGoogle Scholar
  134. Sun AY, Sun GY (2001) Ethanol and oxidative mechanisms in the brain. J Biomed Sci 8:37–43PubMedCrossRefGoogle Scholar
  135. Tannu N, Mash DC, Hemby SE (2007) Cytosolic proteomic alterations in the nucleus accumbens of cocaine overdose victims. Mol Psychiatry 12:55–73PubMedCrossRefGoogle Scholar
  136. Thrift RN, Forte TM, Cahoon BE, Shore VG (1986) Characterization of lipoproteins produced by the human liver cell line, Hep G2, under defined conditions. J Lipid Res 27:236–250PubMedGoogle Scholar
  137. Wilkens S (2005) Rotary molecular motors. Adv Protein Chem 71:345–382PubMedCrossRefGoogle Scholar
  138. Witzmann FA, Strother WN (2004) Proteomics and alcoholism. Int Rev Neurobiol 61:189–214PubMedCrossRefGoogle Scholar
  139. Witzmann FA, Li J, Strother WN, McBride WJ, Hunter L, Crabb DW, Lumeng L, Li TK (2003) Innate differences in protein expression in the nucleus accumbens and hippocampus of inbred alcohol-preferring and -nonpreferring rats. Proteomics 3:1335–1344PubMedPubMedCentralCrossRefGoogle Scholar
  140. Xie YX, Bezard E, Zhao BL (2005) Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J Biol Chem 280:32405–32412PubMedCrossRefGoogle Scholar
  141. Yamamoto BK, Bankson MG (2005) Amphetamine neurotoxicity: cause and consequence of oxidative stress. Crit Rev Neurobiol 17:87–117PubMedCrossRefGoogle Scholar
  142. Yeom M, Shim I, Lee HJ, Hahm DH (2005) Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem Biophys Res Commun 326:321–328PubMedCrossRefGoogle Scholar
  143. Yim MB, Chae HZ, Rhee SG, Chock PB, Stadtman ER (1994) On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J Biol Chem 269:1621–1626PubMedGoogle Scholar
  144. Yuan C, Acosta D Jr (1996) Cocaine-induced mitochondrial dysfunction in primary cultures of ratcardiomyocytes. Toxicology 112:1–10PubMedCrossRefGoogle Scholar
  145. Yuan C, Acosta D Jr (2000) Effect of cocaine on mitochondrial electron transport chain evaluated in primary cultures of neonatal rat myocardial cells and in isolated mitochondrial preparations. Drug Chem Toxicol 23:339–348PubMedCrossRefGoogle Scholar
  146. Yuferov V, Nielsen D, Butelman E, Kreek MJ (2005) Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol 10:101–118PubMedCrossRefGoogle Scholar
  147. Zhang S, Day IN, Ye S (2001) Microarray analysis of nicotine-induced changes in gene expression in endothelial cells. Physiol Genomics 5:187–192PubMedCrossRefGoogle Scholar
  148. Zimmerman M, McGeachie J (1987) The effect of nicotine on aortic endothelium. A quantitative ultrastructural study. Atherosclerosis 63:33–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ming D. Li
    • 1
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Zhejiang UniversityHangzhouChina

Personalised recommendations