Skip to main content

Identification of Biological Pathways Associated with Smoking Initiation/Progression, Nicotine Dependence, and Smoking Cessation

  • Chapter
  • First Online:
  • 1467 Accesses

Abstract

Twin and family studies reveal a significant genetic contribution to the risk of smoking initiation and progression (SI/P) and to ND and to the likelihood of smoking cessation (SC). Numerous genes have been implicated in these smoking-related behaviors, especially ND. However, no study has presented a comprehensive, systematic view of the genetic factors associated with these important smoking-related phenotypes. By searching the literature on these behaviors, we identified 16, 99, and 75 genes that have been associated with SI/P, ND, and SC, respectively. We then determined whether these genes were enriched in pathways important in the neuronal and brain functions underlying addiction. We identified 9, 21, and 13 pathways enriched in the genes associated with SI/P, ND, and SC, respectively. Among these pathways, four signaling pathways were common to all of the three smoking-related phenotypes: i.e., calcium, cAMP-mediated, dopamine receptor, and G-protein-coupled receptor. Further, serotonin receptor signaling and tryptophan metabolism pathways are shared by SI/P and ND; the tight junction signaling pathway is shared by SI/P and SC; and gap junction, neurotrophin/TRK signaling, synaptic long-term potentiation, and tyrosine metabolism are shared by ND and SC. Together, these findings demonstrate significant genetic overlap for these three related phenotypes. Although identification of susceptibility genes for smoking-related behaviors is still in an early stage, the approach utilized in this chapter has the potential to overcome the hurdles caused by factors such as genetic heterogeneity and small samples and thus should yield greater insights into the genetic mechanisms underlying these complex phenotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L, Fugman D, Goate AM, Hinrichs AL, Konvicka K, Martin NG, Montgomery GW, Saccone NL, Saccone SF, Wang JC, Chase GA, Rice JP, Ballinger DG (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16:24–35

    Article  CAS  PubMed  Google Scholar 

  • Brody CL, Hamer DH, Haaga DA (2005) Depression vulnerability, cigarette smoking, and the serotonin transporter gene. Addict Behav 30:557–566

    Article  PubMed  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  CAS  PubMed  Google Scholar 

  • Conti AC, Blendy JA (2004) Regulation of antidepressant activity by cAMP response element binding proteins. Mol Neurobiol 30:143–155

    Article  CAS  PubMed  Google Scholar 

  • Dagda RK, Zaucha JA, Wadzinski BE, Strack S (2003) A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem 278:24976–24985

    Article  CAS  PubMed  Google Scholar 

  • Dagda RK, Merrill RA, Cribbs JT, Chen Y, Hell JW, Usachev YM, Strack S (2008) The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 283:36241–36248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl JP, Jepson C, Levenson R, Wileyto EP, Patterson F, Berrettini WH, Lerman C (2006) Interaction between variation in the D2 dopamine receptor (DRD2) and the neuronal calcium sensor-1 (FREQ) genes in predicting response to nicotine replacement therapy for tobacco dependence. Pharm J 6:194–199

    CAS  Google Scholar 

  • David SP, Munafo MR, Murphy MF, Walton RT, Johnstone EC (2007) The serotonin transporter 5-HTTLPR polymorphism and treatment response to nicotine patch: follow-up of a randomized controlled trial. Nicotine Tob Res 9:225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David SP, Johnstone EC, Murphy MF, Aveyard P, Guo B, Lerman C, Munafo MR (2008) Genetic variation in the serotonin pathway and smoking cessation with nicotine replacement therapy: new data from the patch in practice trial and pooled analyses. Drug Alcohol Depend 98:77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudman JT, Eaton ME, Rajadhyaksha A, Macias W, Taher M, Barczak A, Kameyama K, Huganir R, Konradi C (2003) Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87:922–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher PJ, Le AD, Higgins GA (2008) Serotonin receptors as potential targets for modulation of nicotine use and dependence. Prog Brain Res 172:361–383

    Article  CAS  PubMed  Google Scholar 

  • Goode EL, Badzioch MD, Kim H, Gagnon F, Rozek LS, Edwards KL, Jarvik GP (2003) Multiple genome-wide analyses of smoking behavior in the Framingham Heart Study. BMC Genet 4(Suppl 1):S102

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton AS, Lessov-Schlaggar CN, Cockburn MG, Unger JB, Cozen W, Mack TM (2006) Gender differences in determinants of smoking initiation and persistence in California twins. Cancer Epidemiol Biomark Prev 15:1189–1197

    Article  Google Scholar 

  • Ho MK, Tyndale RF (2007) Overview of the pharmacogenomics of cigarette smoking. Pharm J 7:81–98

    CAS  Google Scholar 

  • Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 23:391–392

    Article  CAS  PubMed  Google Scholar 

  • Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22:8476–8486

    CAS  PubMed  Google Scholar 

  • Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Neale MC, Sullivan P, Corey LA, Gardner CO, Prescott CA (1999) A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med 29:299–308

    Article  CAS  PubMed  Google Scholar 

  • Lerman C, Berrettini W (2003) Elucidating the role of genetic factors in smoking behavior and nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 118:48–54

    Article  Google Scholar 

  • Lerman CE, Schnoll RA, Munafo MR (2007) Genetics and smoking cessation improving outcomes in smokers at risk. Am J Prev Med 33: S398–S405. doi:S0749-3797(07)00565-X [pii] https://doi.org/10.1016/j.amepre.2007.09.006

  • Lessov-Schlaggar CN, Pergadia ML, Khroyan TV, Swan GE (2008) Genetics of nicotine dependence and pharmacotherapy. Biochem Pharmacol 75:178–195

    Article  CAS  PubMed  Google Scholar 

  • Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31

    Article  PubMed  Google Scholar 

  • Maes HH, Sullivan PF, Bulik CM, Neale MC, Prescott CA, Eaves LJ, Kendler KS (2004) A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychol Med 34:1251–1261

    Article  PubMed  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Mayhew KP, Flay BR, Mott JA (2000) Stages in the development of adolescent smoking. Drug Alcohol Depend 59(Suppl 1):S61–S81

    Article  PubMed  Google Scholar 

  • Munafo MR, Johnstone EC (2008) Genes and cigarette smoking. Addiction 103:893–904

    Article  PubMed  Google Scholar 

  • Munafo MR, Johnstone EC, Wileyto EP, Shields PG, Elliot KM, Lerman C (2006) Lack of association of 5-HTTLPR genotype with smoking cessation in a nicotine replacement therapy randomized trial. Cancer Epidemiol Biomark Prev 15:398–400

    Article  CAS  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • O’Gara C, Knight J, Stapleton J, Luty J, Neale B, Nash M, Heuzo-Diaz P, Hoda F, Cohen S, Sutherland G, Collier D, Sham P, Ball D, McGuffin P, Craig I (2008) Association of the serotonin transporter gene, neuroticism and smoking behaviours. J Hum Genet 53:239–246

    Article  PubMed  Google Scholar 

  • Osler M, Holst C, Prescott E, Sorensen TI (2001) Influence of genes and family environment on adult smoking behavior assessed in an adoption study. Genet Epidemiol 21:193–200

    Article  CAS  PubMed  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    Article  CAS  PubMed  Google Scholar 

  • Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Kins S, Schild A, Nitsch RM, Hemmings BA, Gotz J (2002) Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci 16:2039–2048

    Article  PubMed  Google Scholar 

  • Sullivan PF, Kendler KS (1999) The genetic epidemiology of smoking. Nicotine Tob Res 1(Suppl 2):S51–S57. discussion S69–70

    Article  PubMed  Google Scholar 

  • Thomas MJ, Malenka RC (2003) Synaptic plasticity in the mesolimbic dopamine system. Philos Trans R Soc Lond Ser B Biol Sci 358:815–819

    Article  CAS  Google Scholar 

  • Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE (2007) Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 8: 10. doi:1471-2156-8-10 [pii] https://doi.org/10.1186/1471-2156-8-10

  • Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, David SP, Niaura R, Lerman C (2008) Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry 65:683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, Hottenga JJ, Smit JH, Hoogendijk WJ, Zitman FG, Peltonen L, Kaprio J, Pedersen NL, Magnusson PK, Spector TD, Kyvik KO, Morley KI, Heath AC, Martin NG, Westendorp RG, Slagboom PE, Tiemeier H, Hofman A, Uitterlinden AG, Aulchenko YS, Amin N, van Duijn C, Penninx BW, Boomsma DI (2009) Genome-wide association study of smoking initiation and current smoking. Am J Hum Genet 84:367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li MD (2010) Common and unique biological pathways associated with smoking initiation/progression, nicotine dependence, and smoking cessation. Neuropsychopharmacology 35:702–719. https://doi.org/10.1038/npp.2009.178

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This chapter was modified from the paper published by our group in Neuropsychopharmacology (Wang and Li 2010). The related contents are reused with permission.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, M.D. (2018). Identification of Biological Pathways Associated with Smoking Initiation/Progression, Nicotine Dependence, and Smoking Cessation. In: Tobacco Smoking Addiction: Epidemiology, Genetics, Mechanisms, and Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-10-7530-8_12

Download citation

Publish with us

Policies and ethics