Advertisement

Converging Findings from Linkage and Association Analyses on Susceptibility Genes for Smoking Addiction

  • Ming D. Li
Chapter

Abstract

To search for susceptibility genes and loci for nicotine addiction, many genetic approaches have been used, which include genome-wide linkage, candidate gene association, GWAS, and targeted sequencing. Through these approaches, many genes and chromosomal regions have been revealed. In this chapter, we first summarize the literature on genetic studies for all smoking-related phenotypes using different approaches by highlighting the converging results obtained by different approaches and then offer new hypotheses that have emerged across the allelic spectrum, including common and rare variants. It is our hope that the insights we obtained by putting together results from diverse approaches can be applied to other complex diseases/traits. In sum, developing a genetic susceptibility map and keeping it updated are an effective way to keep track of what we know about the genetics of smoking addiction and what the next steps might be with new approaches.

Keywords

Linkage analysis GWAS Genetic association Next-generational sequencing Target sequencing Meta-analysis Functional SNPs Candidate genes Nicotine dependence Missing heritability Gene–gene interaction Gene–environmental interaction 

Notes

Acknowledgment

This chapter was modified from a paper reported by our group in Molecular Psychiatry (Yang and Li 2016). The related contents are reused with permission.

References

  1. Agrawal A, Pergadia ML, Saccone SF, Hinrichs AL, Lessov-Schlaggar CN, Saccone NL, Neuman RJ, Breslau N, Johnson E, Hatsukami D, Montgomery GW, Heath AC, Martin NG, Goate AM, Rice JP, Bierut LJ, Madden PAF (2008) Gamma-aminobutyric acid receptor genes and nicotine dependence: evidence for association from a case-control study. Addiction 103:1027–1038.  https://doi.org/10.1111/j.1360-0443.2008.02236.x PubMedCrossRefGoogle Scholar
  2. Agrawal A, Pergadia ML, Balasubramanian S, Saccone SF, Hinrichs AL, Saccone NL, Breslau N, Johnson EO, Hatsukami D, Martin NG, Montgomery GW, Goate AM, Rice JP, Bierut LJ, Madden PA (2009) Further evidence for an association between the gamma-aminobutyric acid receptor A, subunit 4 genes on chromosome 4 and Fagerstrom Test for Nicotine Dependence. Addiction 104:471–477. doi: ADD2445 [pii].  https://doi.org/10.1111/j.1360-0443.2008.02445.x PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amstadter AB, Nugent NR, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Kilpatrick DG, Gelernter J (2009) Association between COMT, PTSD, and increased smoking following hurricane exposure in an epidemiologic sample. Psychiatry 72:360–369.  https://doi.org/10.1521/psyc.2009.72.4.360 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bar-Shira A, Gana-Weisz M, Gan-Or Z, Giladi E, Giladi N, Orr-Urtreger A (2014) CHRNB3 c.-57A>G functional promoter change affects Parkinson’s disease and smoking. Neurobiol Aging 35(2179):e1–e6.  https://doi.org/10.1016/j.neurobiolaging.2014.03.014 Google Scholar
  5. Johnstone E, Benowitz N, Cargill A, Jacob R, Hinks L, Day I, Murphy M, Walton R (2006) Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin Pharmacol Ther 80:319–330.  https://doi.org/10.1016/j.clpt.2006.06.011 PubMedCrossRefGoogle Scholar
  6. Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel M, Conti DV, Liu J, Lee W, Edlund CK, Hall S, Kwok PY, Benowitz NL, Baker TB, Tyndale RF, Lerman C, Swan GE (2013) Nicotinic acetylcholine receptor variation and response to smoking cessation therapies. Pharmacogenet Genomics 23:94–103.  https://doi.org/10.1097/FPC.0b013e32835cdabd PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berrettine W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373.  https://doi.org/10.1038/sj.mp.4002154 CrossRefGoogle Scholar
  8. Berrettini WH, Wileyto EP, Epstein L, Restine S, Hawk L, Shields P, Niaura R, Lerman C (2007) Catechol-O-methyltransferase (COMT) gene variants predict response to bupropion therapy for tobacco dependence. Biol Psychiatry 61:111–118PubMedCrossRefGoogle Scholar
  9. Beuten J, Ma JZ, Payne TJ, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC, Li MD (2005a) Single- and multilocus allelic variants within the GABA(B) receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence. Am J Hum Genet 76:859–864.  https://doi.org/10.1086/429839 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beuten J, Ma JZ, Payne TJ, Dupont RT, Quezada P, Huang W, Crews KM, Li MD (2005b) Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers. Am J Med Genet B Neuropsychiatr Genet 139:73–80CrossRefGoogle Scholar
  11. Beuten J, Ma JZ, Payne TJ, Dupont RT, Lou XY, Crews KM, Elston RC, Li MD (2006a) Association of Specific Haplotypes of Neurotrophic Tyrosine Kinase Receptor 2 Gene (NTRK2) with vulnerability to nicotine dependence in African-Americans and European-Americans. Biol Psychiatry 61:48–55PubMedCrossRefGoogle Scholar
  12. Beuten J, Payne TJ, Ma JZ, Li MD (2006b) Significant association of catechol-O-methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations. Neuropsychopharmacology 31:675–684PubMedCrossRefGoogle Scholar
  13. Bidwell LC, Garrett ME, McClernon FJ, Fuemmeler BF, Williams RB, Ashley-Koch AE, Kollins SH (2012) A preliminary analysis of interactions between genotype, retrospective ADHD symptoms, and initial reactions to smoking in a sample of young adults. Nicotine Tob Res 14:229–233.  https://doi.org/10.1093/ntr/ntr125 PubMedCrossRefGoogle Scholar
  14. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L, Fugman D, Goate AM, Hinrichs AL, Konvicka K, Martin NG, Montgomery GW, Saccone NL, Saccone SF, Wang JC, Chase GA, Rice JP, Ballinger DG (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16:24–35PubMedCrossRefGoogle Scholar
  15. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PA, Mayo K, Nurnberger J Jr, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bloom AJ, Baker TB, Chen LS, Breslau N, Hatsukami D, Bierut LJ, Goate A (2014) Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. Hum Mol Genet 23:555–561.  https://doi.org/10.1093/hmg/ddt432 PubMedCrossRefGoogle Scholar
  17. Breitling LP, Dahmen N, Illig T, Rujescu D, Nitz B, Raum E, Winterer G, Rothenbacher D, Brenner H (2009a) Variants in COMT and spontaneous smoking cessation: retrospective cohort analysis of 925 cessation events. Pharmacogenet Genomics 19:657–659.  https://doi.org/10.1097/FPC.0b013e32832fabf3 PubMedCrossRefGoogle Scholar
  18. Breitling LP, Dahmen N, Mittelstrass K, Rujescu D, Gallinat J, Fehr C, Giegling I, Lamina C, Illig T, Muller H, Raum E, Rothenbacher D, Wichmann HE, Brenner H, Winterer G (2009b) Association of nicotinic acetylcholine receptor subunit alpha 4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J 9:219–224.  https://doi.org/10.1038/tpj.2009.6 PubMedCrossRefGoogle Scholar
  19. Carmelli D, Swan GE, Robinette D, Fabsitz R (1992) Genetic influence on smoking--a study of male twins. N Engl J Med 327:829–833PubMedCrossRefGoogle Scholar
  20. Carter B, Long T, Cinciripini P (2004) A meta-analytic review of the CYP2A6 genotype and smoking behavior. Nicotine Tob Res 6:221–227PubMedCrossRefGoogle Scholar
  21. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS (2007) Replicating genotype-phenotype associations. Nature 447:655–660.  https://doi.org/10.1038/447655a PubMedCrossRefGoogle Scholar
  22. Chen GB, Payne TJ, Lou XY, Ma JZ, Zhu J, Li MD (2008) Association of amyloid precursor protein-binding protein, family B, member 1 with nicotine dependence in African and European American smokers. Hum Genet 124:393–398.  https://doi.org/10.1007/s00439-008-0558-9 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen LS, Baker TB, Grucza R, Wang JC, Johnson EO, Breslau N, Hatsukami D, Smith SS, Saccone N, Saccone S, Rice JP, Goate AM, Bierut LJ (2012a) Dissection of the phenotypic and genotypic associations with nicotinic dependence. Nicotine Tob Res 14:425–433.  https://doi.org/10.1093/ntr/ntr231 PubMedCrossRefGoogle Scholar
  24. Chen LS, Baker TB, Piper ME, Breslau N, Cannon DS, Doheny KF, Gogarten SM, Johnson EO, Saccone NL, Wang JC, Weiss RB, Goate AM, Bierut LJ (2012b) Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. Am J Psychiatry 169:735–742.  https://doi.org/10.1176/appi.ajp.2012.11101545 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen LS, Saccone NL, Culverhouse RC, Bracci PM, Chen CH, Dueker N, Han Y, Huang H, Jin G, Kohno T, Ma JZ, Przybeck TR, Sanders AR, Smith JA, Sung YJ, Wenzlaff AS, Wu C, Yoon D, Chen YT, Cheng YC, Cho YS, David SP, Duan J, Eaton CB, Furberg H, Goate AM, Gu D, Hansen HM, Hartz S, Hu Z, Kim YJ, Kittner SJ, Levinson DF, Mosley TH, Payne TJ, Rao DC, Rice JP, Rice TK, Schwantes-An TH, Shete SS, Shi J, Spitz MR, Sun YV, Tsai FJ, Wang JC, Wrensch MR, Xian H, Gejman PV, He J, Hunt SC, Kardia SL, Li MD, Lin D, Mitchell BD, Park T, Schwartz AG, Shen H, Wiencke JK, Wu JY, Yokota J, Amos CI, Bierut LJ (2012c) Smoking and genetic risk variation across populations of European, Asian, and African American ancestry – a meta-analysis of chromosome 15q25. Genet Epidemiol 36:340–351.  https://doi.org/10.1002/gepi.21627 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen LS, Bloom AJ, Baker TB, Smith SS, Piper ME, Martinez M, Saccone N, Hatsukami D, Goate A, Bierut L (2014) Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6). Addiction 109:128–137.  https://doi.org/10.1111/add.12353 PubMedCrossRefGoogle Scholar
  27. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425.  https://doi.org/10.1038/nrg2779 PubMedCrossRefGoogle Scholar
  28. Cui WY, Wang S, Yang J, Yi SG, Yoon D, Kim YJ, Payne TJ, Ma JZ, Park T, Li MD (2013) Significant association of CHRNB3 variants with nicotine dependence in multiple ethnic populations. Mol Psychiatry 18:1149–1151.  https://doi.org/10.1038/mp.2012.190 PubMedCrossRefGoogle Scholar
  29. Culverhouse RC, Johnson EO, Breslau N, Hatsukami DK, Sadler B, Brooks AI, Hesselbrock VM, Schuckit MA, Tischfield JA, Goate AM, Saccone NL, Bierut LJ (2014) Multiple distinct CHRNB3-CHRNA6 variants are genetic risk factors for nicotine dependence in African Americans and European Americans. Addiction 109:814–822.  https://doi.org/10.1111/add.12478 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dani JA (2003) Roles of dopamine signaling in nicotine addiction. Mol Psychiatry 8:255–256.  https://doi.org/10.1038/sj.mp.4001284 PubMedCrossRefGoogle Scholar
  31. Das D, Tan X, Easteal S (2011) Effect of model choice in genetic association studies: DRD4 exon III VNTR and cigarette use in young adults. Am J Med Genet B Neuropsychiatr Genet 156B:346–351.  https://doi.org/10.1002/ajmg.b.31169 PubMedCrossRefGoogle Scholar
  32. David SP, Johnstone EC, Murphy MF, Aveyard P, Guo B, Lerman C, Munafo MR (2008a) Genetic variation in the serotonin pathway and smoking cessation with nicotine replacement therapy: new data from the patch in practice trial and pooled analyses. Drug Alcohol Depend 98:77–85.  https://doi.org/10.1016/j.drugalcdep.2008.04.013 PubMedPubMedCentralCrossRefGoogle Scholar
  33. David SP, Munafo MR, Murphy MF, Proctor M, Walton RT, Johnstone EC (2008b) Genetic variation in the dopamine D4 receptor (DRD4) gene and smoking cessation: follow-up of a randomised clinical trial of transdermal nicotine patch. Pharmacogenomics J 8:122–128.  https://doi.org/10.1038/sj.tpj.6500447 PubMedCrossRefGoogle Scholar
  34. David SP, Mezuk B, Zandi PP, Strong D, Anthony JC, Niaura R, Uhl GR, Eaton WW (2010) Sex differences in TTC12/ANKK1 haplotype associations with daily tobacco smoking in Black and White Americans. Nicotine Tob Res 12: 251–262. doi:ntp201 [pii]  https://doi.org/10.1093/ntr/ntp201
  35. David SP, Hamidovic A, Chen GK, Bergen AW, Wessel J, Kasberger JL, Brown WM, Petruzella S, Thacker EL, Kim Y, Nalls MA, Tranah GJ, Sung YJ, Ambrosone CB, Arnett D, Bandera EV, Becker DM, Becker L, Berndt SI, Bernstein L, Blot WJ, Broeckel U, Buxbaum SG, Caporaso N, Casey G, Chanock SJ, Deming SL, Diver WR, Eaton CB, Evans DS, Evans MK, Fornage M, Franceschini N, Harris TB, Henderson BE, Hernandez DG, Hitsman B, Hu JJ, Hunt SC, Ingles SA, John EM, Kittles R, Kolb S, Kolonel LN, Le Marchand L, Liu Y, Lohman KK, McKnight B, Millikan RC, Murphy A, Neslund-Dudas C, Nyante S, Press M, Psaty BM, Rao DC, Redline S, Rodriguez-Gil JL, Rybicki BA, Signorello LB, Singleton AB, Smoller J, Snively B, Spring B, Stanford JL, Strom SS, Swan GE, Taylor KD, Thun MJ, Wilson AF, Witte JS, Yamamura Y, Yanek LR, Yu K, Zheng W, Ziegler RG, Zonderman AB, Jorgenson E, Haiman CA, Furberg H (2012) Genome-wide meta-analyses of smoking behaviors in African Americans. Transl Psychiatry 2:e119.  https://doi.org/10.1038/tp.2012.41 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Daw J, Boardman JD, Peterson R, Smolen A, Haberstick BC, Ehringer MA, Ennett ST, Foshee VA (2014) The interactive effect of neighborhood peer cigarette use and 5HTTLPR genotype on individual cigarette use. Addict Behav 39:1804–1810.  https://doi.org/10.1016/j.addbeh.2014.07.014 PubMedPubMedCentralCrossRefGoogle Scholar
  37. do Prado-Lima PA, Chatkin JM, Taufer M, Oliveira G, Silveira E, Neto CA, Haggstram F, Bodanese LC, da Cruz IB (2004) Polymorphism of 5HT2A serotonin receptor gene is implicated in smoking addiction. Am J Med Genet B Neuropsychiatr Genet 128B:90–93.  https://doi.org/10.1002/ajmg.b.30004 PubMedCrossRefGoogle Scholar
  38. Docampo E, Ribases M, Gratacos M, Bruguera E, Cabezas C, Sanchez-Mora C, Nieva G, Puente D, Argimon-Pallas JM, Casas M, Rabionet R, Estivill X (2012) Association of neurexin 3 polymorphisms with smoking behavior. Genes Brain Behav 11:704–711.  https://doi.org/10.1111/j.1601-183X.2012.00815.x PubMedCrossRefGoogle Scholar
  39. Domino EF, Evans CL, Ni L, Guthrie SK, Koeppe RA, Zubieta JK (2012) Tobacco smoking produces greater striatal dopamine release in G-allele carriers with mu opioid receptor A118G polymorphism. Prog Neuro-Psychopharmacol Biol Psychiatry 38:236–240.  https://doi.org/10.1016/j.pnpbp.2012.04.003 CrossRefGoogle Scholar
  40. Doyle GA, Chou AD, Saung WT, Lai AT, Lohoff FW, Berrettini WH (2014) Identification of CHRNA5 rare variants in African-American heavy smokers. Psychiatr Genet 24:102–109.  https://doi.org/10.1097/YPG.0000000000000029 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ducci F, Goldman D (2012) The genetic basis of addictive disorders. Psychiatr Clin North Am 35:495–519.  https://doi.org/10.1016/j.psc.2012.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ducci F, Kaakinen M, Pouta A, Hartikainen AL, Veijola J, Isohanni M, Charoen P, Coin L, Hoggart C, Ekelund J, Peltonen L, Freimer N, Elliott P, Schumann G, Jarvelin MR (2011) TTC12-ANKK1-DRD2 and CHRNA5-CHRNA3-CHRNB4 influence different pathways leading to smoking behavior from adolescence to mid-adulthood. Biol Psychiatry 69: 650–660. doi:S0006-3223(10)01059-0 [pii]  https://doi.org/10.1016/j.biopsych.2010.09.055
  43. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRefGoogle Scholar
  44. Ehringer MA, Clegg HV, Collins AC, Corley RP, Crowley T, Hewitt JK, Hopfer CJ, Krauter K, Lessem J, Rhee SH, Schlaepfer I, Smolen A, Stallings MC, Young SE, Zeiger JS (2007) Association of the neuronal nicotinic receptor beta 2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. Am J Med Genet B-Neuropsychiatr Genet 144B:596–604.  https://doi.org/10.1002/Ajmg.B.30464 PubMedCrossRefGoogle Scholar
  45. Ella E, Sato N, Nishizawa D, Kageyama S, Yamada H, Kurabe N, Ishino K, Tao H, Tanioka F, Nozawa A, Renyin C, Shinmura K, Ikeda K, Sugimura H (2012) Association between dopamine beta hydroxylase rs5320 polymorphism and smoking behaviour in elderly Japanese. J Hum Genet 57:385–390.  https://doi.org/10.1038/jhg.2012.40 PubMedCrossRefGoogle Scholar
  46. Ellis JA, Olsson CA, Moore E, Greenwood P, Van De Ven MO, Patton GC (2011) A role for the DRD4 exon III VNTR in modifying the association between nicotine dependence and neuroticism. Nicotine Tob Res 13:64–69.  https://doi.org/10.1093/ntr/ntq210 PubMedCrossRefGoogle Scholar
  47. Farris SP, Harris RA, Ponomarev I (2015) Epigenetic modulation of brain gene networks for cocaine and alcohol abuse. Front Neurosci 9:176.  https://doi.org/10.3389/fnins.2015.00176 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Feng Y, Niu TH, Xing HX, Xu X, Chen CZ, Peng SJ, Wang LH, Laird N, Xu XP (2004) A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 75:112–121.  https://doi.org/10.1086/422194 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Freathy RM, Ring SM, Shields B, Galobardes B, Knight B, Weedon MN, Smith GD, Frayling TM, Hattersley AT (2009) A common genetic variant in the 15q24 nicotinic acetylcholine receptor gene cluster (CHRNA5-CHRNA3-CHRNB4) is associated with a reduced ability of women to quit smoking in pregnancy. Hum Mol Genet 18:2922–2927.  https://doi.org/10.1093/hmg/ddp216 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gelernter J (2015) Genetics of complex traits in psychiatry. Biol Psychiatry 77:36–42.  https://doi.org/10.1016/j.biopsych.2014.08.005 PubMedCrossRefGoogle Scholar
  51. Gelernter J, Yu Y, Weiss R, Brady K, Panhuysen C, Yang BZ, Kranzler HR, Farrer L (2006) Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum Mol Genet 15:3498–3507PubMedCrossRefGoogle Scholar
  52. Gelernter J, Panhuysen C, Weiss R, Brady K, Poling J, Krauthammer M, Farrer L, Kranzler HR (2007) Genomewide linkage scan for nicotine dependence: identification of a chromosome 5 risk locus. Biol Psychiatry 61:119–126PubMedCrossRefGoogle Scholar
  53. Grucza RA, Johnson EO, Krueger RF, Breslau N, Saccone NL, Chen LS, Derringer J, Agrawal A, Lynskey M, Bierut LJ (2010) Incorporating age at onset of smoking into genetic models for nicotine dependence: evidence for interaction with multiple genes. Addict Biol 15:346–357.  https://doi.org/10.1111/j.1369-1600.2010.00220.x PubMedPubMedCentralCrossRefGoogle Scholar
  54. Haller G, Druley T, Vallania FL, Mitra RD, Li P, Akk G, Steinbach JH, Breslau N, Johnson E, Hatsukami D, Stitzel J, Bierut LJ, Goate AM (2012) Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. Hum Mol Genet 21:647–655.  https://doi.org/10.1093/hmg/ddr498 PubMedCrossRefGoogle Scholar
  55. Han S, Gelernter J, Luo X, Yang BZ (2010) Meta-analysis of 15 genome-wide linkage scans of smoking behavior. Biol Psychiatry 67:12–19. doi: S0006-3223(09)01048-8 [pii].  https://doi.org/10.1016/j.biopsych.2009.08.028 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hardin J, He Y, Javitz HS, Wessel J, Krasnow RE, Tildesley E, Hops H, Swan GE, Bergen AW (2009) Nicotine withdrawal sensitivity, linkage to chr6q26, and association of OPRM1 SNPs in the SMOking in FAMilies (SMOFAM) sample. Cancer Epidemiol Biomark Prev 18:3399–3406.  https://doi.org/10.1158/1055-9965.EPI-09-0960 CrossRefGoogle Scholar
  57. Hoft NR, Corley RP, McQueen MB, Schlaepfer IR, Huizinga D, Ehringer MA (2009) Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample. Neuropsychopharmacology 34:698–706.  https://doi.org/10.1038/npp.2008.122 PubMedCrossRefGoogle Scholar
  58. Huang S, Cook DG, Hinks LJ, Chen XH, Ye S, Gilg JA, Jarvis MJ, Whincup PH, Day IN (2005) CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics 15:839–850PubMedCrossRefGoogle Scholar
  59. Huang W, Ma JZ, Payne TJ, Beuten J, Dupont RT, Li MD (2008a) Significant association of DRD1 with nicotine dependence. Hum Genet 123:133–140PubMedCrossRefGoogle Scholar
  60. Huang W, Payne TJ, Ma JZ, Li MD (2008b) A functional polymorphism, rs6280, in DRD3 is significantly associated with nicotine dependence in European-American smokers. Am J Med Genet B Neuropsychiatr Genet 147B:1109–1115PubMedCrossRefGoogle Scholar
  61. Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, Li MD (2009) Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample. Neuropsychopharmacology 34:319–330PubMedCrossRefGoogle Scholar
  62. Iordanidou M, Tavridou A, Petridis I, Kyroglou S, Kaklamanis L, Christakidis D, Manolopoulos VG (2010) Association of polymorphisms of the serotonergic system with smoking initiation in Caucasians. Drug Alcohol Depend 108:70–76.  https://doi.org/10.1016/j.drugalcdep.2009.11.015 PubMedCrossRefGoogle Scholar
  63. Kamens HM, Corley RP, McQueen MB, Stallings MC, Hopfer CJ, Crowley TJ, Brown SA, Hewitt JK, Ehringer MA (2013) Nominal association with CHRNA4 variants and nicotine dependence. Genes Brain Behav 12:297–304.  https://doi.org/10.1111/gbb.12021 PubMedCrossRefGoogle Scholar
  64. Keskitalo K, Broms U, Heliovaara M, Ripatti S, Surakka I, Perola M, Pitkaniemi J, Peltonen L, Aromaa A, Kaprio J (2009) Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet 18:4007–4012.  https://doi.org/10.1093/hmg/ddp322 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kremer I, Bachner-Melman R, Reshef A, Broude L, Nemanov L, Gritsenko I, Heresco-Levy U, Elizur Y, Ebstein RP (2005) Association of the serotonin transporter gene with smoking behavior. Am J Psychiatry 162:924–930.  https://doi.org/10.1176/appi.ajp.162.5.924 PubMedCrossRefGoogle Scholar
  67. Kumasaka N, Aoki M, Okada Y, Takahashi A, Ozaki K, Mushiroda T, Hirota T, Tamari M, Tanaka T, Nakamura Y, Kamatani N, Kubo M (2012) Haplotypes with copy number and single nucleotide polymorphisms in CYP2A6 locus are associated with smoking quantity in a Japanese population. PLoS One 7:e44507.  https://doi.org/10.1371/journal.pone.0044507 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lee SH, DeCandia TR, Ripke S, Yang J, Sullivan PF, Goddard ME, Keller MC, Visscher PM, Wray NR (2012) Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 44:247–250.  https://doi.org/10.1038/ng.1108 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee CT, Fuemmeler BF, McClernon FJ, Ashley-Koch A, Kollins SH (2013) Nicotinic receptor gene variants interact with attention deficient hyperactive disorder symptoms to predict smoking trajectories from early adolescence to adulthood. Addict Behav 38:2683–2689.  https://doi.org/10.1016/j.addbeh.2013.06.013 PubMedCrossRefGoogle Scholar
  70. Leventhal AM, Lee W, Bergen AW, Swan GE, Tyndale RF, Lerman C, Conti DV (2014) Nicotine dependence as a moderator of genetic influences on smoking cessation treatment outcome. Drug Alcohol Depend 138:109–117.  https://doi.org/10.1016/j.drugalcdep.2014.02.016 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Li MD (2008) Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Hum Genet 123:119–131PubMedCrossRefGoogle Scholar
  72. Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31PubMedCrossRefGoogle Scholar
  73. Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V, Duenes AS, Crews KM, Elston RC (2005) Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 14:1211–1219PubMedCrossRefGoogle Scholar
  74. Li MD, Payne TJ, Ma JZ, Lou XY, Zhang D, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC (2006) A genomewide search finds major susceptibility Loci for nicotine dependence on chromosome 10 in african americans. Am J Hum Genet 79:745–751PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li MD, Sun D, Lou XY, Beuten J, Payne TJ, Ma JZ (2007) Linkage and association studies in African- and Caucasian-American populations demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence. Mol Psychiatry 12:462–473PubMedCrossRefGoogle Scholar
  76. Li CY, Mao X, Wei L (2008a) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4:e2. doi: 07-PLCB-RA-0425 [pii].  https://doi.org/10.1371/journal.pcbi.0040002 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li MD, Ma JZ, Payne TJ, Lou XY, Zhang D, Dupont RT, Elston RC (2008b) Genome-wide linkage scan for nicotine dependence in European Americans and its converging results with African Americans in the Mid-South Tobacco Family sample. Mol Psychiatry 13:407–416PubMedCrossRefGoogle Scholar
  78. Li MD, Xu Q, Lou XY, Payne TJ, Niu T, Ma JZ (2010a) Association and interaction analysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet 153B:745–756.  https://doi.org/10.1002/ajmg.b.31043 PubMedPubMedCentralGoogle Scholar
  79. Li MD, Yoon D, Lee JY, Han BG, Niu T, Payne TJ, Ma JZ, Park T (2010b) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PLoS One 5:e12183.  https://doi.org/10.1371/journal.pone.0012183 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li X, Semenova S, D’Souza MS, Stoker AK, Markou A (2014) Involvement of glutamatergic and GABAergic systems in nicotine dependence: implications for novel pharmacotherapies for smoking cessation. Neuropharmacology 76 Pt B:554–565.  https://doi.org/10.1016/j.neuropharm.2013.05.042 PubMedCrossRefGoogle Scholar
  81. Ling D, Niu T, Feng Y, Xing H, Xu X (2004) Association between polymorphism of the dopamine transporter gene and early smoking onset: an interaction risk on nicotine dependence. J Hum Genet 49:35–39.  https://doi.org/10.1007/s10038-003-0104-5 PubMedCrossRefGoogle Scholar
  82. Liu QR, Drgon T, Walther D, Johnson C, Poleskaya O, Hess J, Uhl GR (2005) Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc Natl Acad Sci U S A 102:11864–11869PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G, Vollenweider P, Preisig M, Wareham NJ, Zhao JH, Loos RJ, Barroso I, Khaw KT, Grundy S, Barter P, Mahley R, Kesaniemi A, McPherson R, Vincent JB, Strauss J, Kennedy JL, Farmer A, McGuffin P, Day R, Matthews K, Bakke P, Gulsvik A, Lucae S, Ising M, Brueckl T, Horstmann S, Wichmann HE, Rawal R, Dahmen N, Lamina C, Polasek O, Zgaga L, Huffman J, Campbell S, Kooner J, Chambers JC, Burnett MS, Devaney JM, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Epstein S, Wilson JF, Wild SH, Campbell H, Vitart V, Reilly MP, Li M, Qu L, Wilensky R, Matthai W, Hakonarson HH, Rader DJ, Franke A, Wittig M, Schafer A, Uda M, Terracciano A, Xiao X, Busonero F, Scheet P, Schlessinger D, St Clair D, Rujescu D, Abecasis GR, Grabe HJ, Teumer A, Volzke H, Petersmann A, John U, Rudan I, Hayward C, Wright AF, Kolcic I, Wright BJ, Thompson JR, Balmforth AJ, Hall AS, Samani NJ, Anderson CA, Ahmad T, Mathew CG, Parkes M, Satsangi J, Caulfield M, Munroe PB, Farrall M, Dominiczak A, Worthington J, et al. (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42: 436–440. doi:ng.572 [pii]  https://doi.org/10.1038/ng.572
  84. Lou XY, Ma JZ, Payne TJ, Beuten J, Crew KM, Li MD (2006) Gene-based analysis suggests association of the nicotinic acetylcholine receptor beta1 subunit (CHRNB1) and M1 muscarinic acetylcholine receptor (CHRM1) with vulnerability for nicotine dependence. Hum Genet 120:381–389PubMedCrossRefGoogle Scholar
  85. Lou XY, Ma JZ, Sun D, Payne TJ, Li MD (2007) Fine mapping of a linkage region on chromosome 17p13 reveals that GABARAP and DLG4 are associated with vulnerability to nicotine dependence in European-Americans. Hum Mol Genet 16:142–153PubMedCrossRefGoogle Scholar
  86. Loukola A, Buchwald J, Gupta R, Palviainen T, Hallfors J, Tikkanen E, Korhonen T, Ollikainen M, Sarin AP, Ripatti S, Lehtimaki T, Raitakari O, Salomaa V, Rose RJ, Tyndale RF, Kaprio J (2015) A genome-wide association study of a biomarker of nicotine metabolism. PLoS Genet 11:e1005498.  https://doi.org/10.1371/journal.pgen.1005498 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD (2005) Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet 14:1691–1698PubMedCrossRefGoogle Scholar
  88. Ma JZ, Payne TJ, Li MD (2010) Significant association of glutamate receptor, ionotropic N-methyl-D-aspartate 3A (GRIN3A), with nicotine dependence in European- and African-American smokers. Hum Genet 127:503–512.  https://doi.org/10.1007/s00439-010-0787-6 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mangold JE, Payne TJ, Ma JZ, Chen G, Li MD (2008) Bitter taste receptor gene polymorphisms are an important factor in the development of nicotine dependence in African Americans. J Med Genet 45:578–582PubMedCrossRefGoogle Scholar
  90. Marteau TM, Aveyard P, Munafo MR, Prevost AT, Hollands GJ, Armstrong D, Sutton S, Hill C, Johnstone E, Kinmonth AL (2012) Effect on adherence to nicotine replacement therapy of informing smokers their dose is determined by their genotype: a randomised controlled trial. PLoS One 7:e35249.  https://doi.org/10.1371/journal.pone.0035249 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Munafo MR, Freathy RM, Ring SM, St Pourcain B, Smith GD (2011a) Association of COMT Val(108/158)Met genotype and cigarette smoking in pregnant women. Nicotine Tob Res 13:55–63.  https://doi.org/10.1093/ntr/ntq209 PubMedCrossRefGoogle Scholar
  92. Munafo MR, Johnstone EC, Walther D, Uhl GR, Murphy MF, Aveyard P (2011b) CHRNA3 rs1051730 genotype and short-term smoking cessation. Nicotine Tob Res 13:982–988.  https://doi.org/10.1093/ntr/ntr106 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Munafo MR, Johnstone EC, Aveyard P, Marteau T (2013) Lack of association of OPRM1 genotype and smoking cessation. Nicotine Tob Res 15:739–744.  https://doi.org/10.1093/ntr/nts174 PubMedCrossRefGoogle Scholar
  94. Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N (2010) Association study of a functional catechol-O-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett 473:216–219.  https://doi.org/10.1016/j.neulet.2010.02.050 PubMedCrossRefGoogle Scholar
  95. Nees F, Witt SH, Lourdusamy A, Vollstadt-Klein S, Steiner S, Poustka L, Banaschewski T, Barker GJ, Buchel C, Conrod PJ, Frank J, Gallinat J, Garavan H, Heinz A, Ittermann B, Loth E, Mann K, Artiges E, Paus T, Pausova Z, Smolka MN, Struve M, Schumann G, Rietschel M, Flor H (2013) Genetic risk for nicotine dependence in the cholinergic system and activation of the brain reward system in healthy adolescents. Neuropsychopharmacology 38:2081–2089.  https://doi.org/10.1038/npp.2013.131 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Neville MJ, Johnstone EC, Walton RT (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 23:540–545PubMedCrossRefGoogle Scholar
  97. Nussbaum J, Xu Q, Payne TJ, Ma JZ, Huang W, Gelernter J, Li MD (2008) Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet 17:1569–1577PubMedPubMedCentralCrossRefGoogle Scholar
  98. Omidvar M, Stolk L, Uitterlinden AG, Hofman A, Van Duijn CM, Tiemeier H (2009) The effect of catechol-O-methyltransferase Met/Val functional polymorphism on smoking cessation: retrospective and prospective analyses in a cohort study. Pharmacogenet Genomics 19:45–51PubMedCrossRefGoogle Scholar
  99. Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16:275–284.  https://doi.org/10.1038/nrg3908 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Piper ME, McCarthy DE, Baker TB (2006) Assessing tobacco dependence: a guide to measure evaluation and selection. Nicotine Tob Res 8:339–351PubMedCrossRefGoogle Scholar
  101. Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, Schwandt ML, Sommer WH, George DT, Parsons LH, Herscovitch P, Hommer D, Heilig M (2011) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 16:809–817.  https://doi.org/10.1038/mp.2010.56 PubMedCrossRefGoogle Scholar
  102. Ray R, Tyndale RF, Lerman C (2009) Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J Neurogenet 23:252–261.  https://doi.org/10.1080/01677060802572887 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rice JP, Hartz SM, Agrawal A, Almasy L, Bennett S, Breslau N, Bucholz KK, Doheny KF, Edenberg HJ, Goate AM, Hesselbrock V, Howells WB, Johnson EO, Kramer J, Krueger RF, Kuperman S, Laurie C, Manolio TA, Neuman RJ, Nurnberger JI, Porjesz B, Pugh E, Ramos EM, Saccone N, Saccone S, Schuckit M, Bierut LJ, Consortium G (2012) CHRNB3 is more strongly associated with Fagerstrom test for cigarette dependence-based nicotine dependence than cigarettes per day: phenotype definition changes genome-wide association studies results. Addiction 107:2019–2028.  https://doi.org/10.1111/j.1360-0443.2012.03922.x PubMedPubMedCentralCrossRefGoogle Scholar
  104. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRefGoogle Scholar
  105. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49PubMedCrossRefGoogle Scholar
  106. Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D, Johnson EO, Madden PA, Swan GE, Wang JC, Goate AM, Rice JP, Bierut LJ (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 150B:453–466.  https://doi.org/10.1002/ajmg.b.30828 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, Johnson EO, Rice JP, Goate AM, Bierut LJ (2010) Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav 9: 741–750. doi:GBB608 [pii]  https://doi.org/10.1111/j.1601-183X.2010.00608.x
  108. Sato N, Kageyama S, Chen R, Suzuki M, Tanioka F, Kamo T, Shinmura K, Nozawa A, Sugimura H (2010) Association between neurexin 1 (NRXN1) polymorphisms and the smoking behavior of elderly Japanese. Psychiatr Genet 20:135–136.  https://doi.org/10.1097/YPG.0b013e32833a21f9 PubMedGoogle Scholar
  109. Schlaepfer IR, Hoft NR, Collins AC, Corley RP, Hewitt JK, Hopfer CJ, Lessem JM, McQueen MB, Rhee SH, Ehringer MA (2008) The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 63:1039–1046PubMedCrossRefGoogle Scholar
  110. Sham PC, Purcell SM (2014) Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet 15:335–346.  https://doi.org/10.1038/nrg3706 PubMedCrossRefGoogle Scholar
  111. Slimak MA, Ables JL, Frahm S, Antolin-Fontes B, Santos-Torres J, Moretti M, Gotti C, Ibanez-Tallon I (2014) Habenular expression of rare missense variants of the beta4 nicotinic receptor subunit alters nicotine consumption. Front Hum Neurosci 8:12.  https://doi.org/10.3389/fnhum.2014.00012 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Stapleton JA, Sutherland G, O’Gara C (2007) Association between dopamine transporter genotypes and smoking cessation: a meta-analysis. Addict Biol 12:221–226PubMedCrossRefGoogle Scholar
  113. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551.  https://doi.org/10.1038/nrg3240 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sun D, Ma JZ, Payne TJ, Li MD (2008) Beta-arrestins 1 and 2 are associated with nicotine dependence in European American smokers. Mol Psychiatry 13: 398–406. doi:4002036 [pii]  https://doi.org/10.1038/sj.mp.4002036
  115. Swan GE, Hops H, Wilhelmsen KC, Lessov-Schlaggar CN, Cheng LS, Hudmon KS, Amos CI, Feiler HS, Ring HZ, Andrews JA, Tildesley E, Benowitz N (2006) A genome-wide screen for nicotine dependence susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 141:354–360CrossRefGoogle Scholar
  116. TAG (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42: 441–447. doi:ng.571 [pii]  https://doi.org/10.1038/ng.571
  117. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsater A, Flex A, Aben KK, de Vegt F, Mulders PF, Isla D, Vidal MJ, Asin L, Saez B, Murillo L, Blondal T, Kolbeinsson H, Stefansson JG, Hansdottir I, Runarsdottir V, Pola R, Lindblad B, van Rij AM, Dieplinger B, Haltmayer M, Mayordomo JI, Kiemeney LA, Matthiasson SE, Oskarsson H, Tyrfingsson T, Gudbjartsson DF, Gulcher JR, Jonsson S, Thorsteinsdottir U, Kong A, Stefansson K (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452:638–642PubMedPubMedCentralCrossRefGoogle Scholar
  118. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S, Gieger C, Rawal R, Mangino M, Prokopenko I, Magi R, Keskitalo K, Gudjonsdottir IH, Gretarsdottir S, Stefansson H, Thompson JR, Aulchenko YS, Nelis M, Aben KK, den Heijer M, Dirksen A, Ashraf H, Soranzo N, Valdes AM, Steves C, Uitterlinden AG, Hofman A, Tonjes A, Kovacs P, Hottenga JJ, Willemsen G, Vogelzangs N, Doring A, Dahmen N, Nitz B, Pergadia ML, Saez B, De Diego V, Lezcano V, Garcia-Prats MD, Ripatti S, Perola M, Kettunen J, Hartikainen AL, Pouta A, Laitinen J, Isohanni M, Huei-Yi S, Allen M, Krestyaninova M, Hall AS, Jones GT, van Rij AM, Mueller T, Dieplinger B, Haltmayer M, Jonsson S, Matthiasson SE, Oskarsson H, Tyrfingsson T, Kiemeney LA, Mayordomo JI, Lindholt JS, Pedersen JH, Franklin WA, Wolf H, Montgomery GW, Heath AC, Martin NG, Madden PA, Giegling I, Rujescu D, Jarvelin MR, Salomaa V, Stumvoll M, Spector TD, Wichmann HE, Metspalu A, Samani NJ, Penninx BW, Oostra BA, Boomsma DI, Tiemeier H, van Duijn CM, Kaprio J, Gulcher JR, McCarthy MI, Peltonen L, Thorsteinsdottir U, Stefansson K (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42: 448–453. doi:ng.573 [pii]  https://doi.org/10.1038/ng.573
  119. Ton TG, Rossing MA, Bowen DJ, Srinouanprachan S, Wicklund K, Farin FM (2007) Genetic polymorphisms in dopamine-related genes and smoking cessation in women: a prospective cohort study. Behav Brain Funct 3:22PubMedPubMedCentralCrossRefGoogle Scholar
  120. Trummer O, Koppel H, Wascher TC, Grunbacher G, Gutjahr M, Stanger O, Ramschak-Schwarzer S, Boehm BO, Winkelmann BR, Marz W, Renner W (2006) The serotonin transporter gene polymorphism is not associated with smoking behavior. Pharmacogenomics J 6:397–400.  https://doi.org/10.1038/sj.tpj.6500389 PubMedCrossRefGoogle Scholar
  121. Turner JR, Ray R, Lee B, Everett L, Xiang J, Jepson C, Kaestner KH, Lerman C, Blendy JA (2014) Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 19:801–810.  https://doi.org/10.1038/mp.2013.104 PubMedCrossRefGoogle Scholar
  122. Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, Hottenga JJ, Smit JH, Hoogendijk WJ, Zitman FG, Peltonen L, Kaprio J, Pedersen NL, Magnusson PK, Spector TD, Kyvik KO, Morley KI, Heath AC, Martin NG, Westendorp RG, Slagboom PE, Tiemeier H, Hofman A, Uitterlinden AG, Aulchenko YS, Amin N, van Duijn C, Penninx BW, Boomsma DI (2009) Genome-wide association study of smoking initiation and current smoking. Am J Hum Genet 84:367–379PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wang S, DvdV A, Xu Q, Seneviratne C, Pomerleau OF, Pomerleau CS, Payne TJ, Ma JZ, Li MD (2014) Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations. Hum Genet 133:575–586.  https://doi.org/10.1007/s00439-013-1398-9 PubMedCrossRefGoogle Scholar
  124. Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N, Singh NA, Baird L, Coon H, McMahon WM, Piper ME, Fiore MC, Scholand MB, Connett JE, Kanner RE, Gahring LC, Rogers SW, Hoidal JR, Leppert MF (2008) A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 4 e1000125. doi:ARTN e1000125  https://doi.org/10.1371/journal.pgen.1000125
  125. Wessel J, McDonald SM, Hinds DA, Stokowski RP, Javitz HS, Kennemer M, Krasnow R, Dirks W, Hardin J, Pitts SJ, Michel M, Jack L, Ballinger DG, McClure JB, Swan GE, Bergen AW (2010) Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerstrom test for nicotine dependence. Neuropsychopharmacology 35:2392–2402.  https://doi.org/10.1038/npp.2010.120 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Xie P, Kranzler HR, Krauthammer M, Cosgrove KP, Oslin D, Anton RF, Farrer LA, Picciotto MR, Krystal JH, Zhao H, Gelernter J (2011) Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol Psychiatry 70:528–536.  https://doi.org/10.1016/j.biopsych.2011.04.017 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Xu Q, Huang W, Payne TJ, Ma JZ, Li MD (2009) Detection of genetic association and a functional polymorphism of dynamin 1 gene with nicotine dependence in European and African Americans. Neuropsychopharmacology 34: 1351–1359. doi:npp2008197 [pii]  https://doi.org/10.1038/npp.2008.197
  128. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569.  https://doi.org/10.1038/ng.608 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yang Z, Seneviratne C, Wang S, Ma JZ, Payne TJ, Wang J, Li MD (2013) Serotonin transporter and receptor genes significantly impact nicotine dependence through genetic interactions in both European American and African American smokers. Drug Alcohol Depend 129 217. doi:S0376-8716(12)00483-8 [pii]  https://doi.org/10.1016/j.drugalcdep.2012.12.007
  130. Yang J, Wang S, Yang Z, Hodgkinson CA, Iarikova P, Ma JZ, Payne TJ, Goldman D, Li MD (2015) The contribution of rare and common variants in 30 genes to risk nicotine dependence. Mol Psychiatry 20:1467–1478.  https://doi.org/10.1038/mp.2014.156 PubMedCrossRefGoogle Scholar
  131. Yang J, Li MD (2016) Converging findings from linkage and association analyses on susceptibility genes for smoking and other addictions. Mol Psychiatry 21:992–1008.  https://doi.org/10.1038/mp.2016.67 PubMedCrossRefGoogle Scholar
  132. Yu A, Zhao C, Fan Y, Jang W, Mungall AJ, Deloukas P, Olsen A, Doggett NA, Ghebranious N, Broman KW, Weber JL (2001) Comparison of human genetic and sequence-based physical maps. Nature 409:951–953.  https://doi.org/10.1038/35057185 PubMedCrossRefGoogle Scholar
  133. Yu Y, Panhuysen C, Kranzler HR, Hesselbrock V, Rounsaville B, Weiss R, Brady K, Farrer LA, Gelernter J (2006) Intronic variants in the dopa decarboxylase (DDC) gene are associated with smoking behavior in European-Americans and African-Americans. Hum Mol Genet 15:2192–2199PubMedCrossRefGoogle Scholar
  134. Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC, Corley RP, Crowley TJ, Hewitt JK, Hopfer CJ, Lessem J, McQueen MB, Rhee SH, Ehringer MA (2008) The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Hum Mol Genet 17:724–734.  https://doi.org/10.1093/hmg/ddm344 PubMedCrossRefGoogle Scholar
  135. Zhang L, Kendler KS, Chen X (2006) Association of the phosphatase and tensin homolog gene (PTEN) with smoking initiation and nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 141B:10–14.  https://doi.org/10.1002/ajmg.b.30240 PubMedCrossRefGoogle Scholar
  136. Zhang XY, da Chen C, Xiu MH, Luo X, Zuo L, Haile CN, Kosten TA, Kosten TR (2012) BDNF Val66Met variant and smoking in a Chinese population. PLoS One 7:e53295.  https://doi.org/10.1371/journal.pone.0053295 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ming D. Li
    • 1
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Zhejiang UniversityHangzhouChina

Personalised recommendations