Skip to main content

Compressed Natural Gas and Hythane for On-road Passenger and Commercial Vehicles

  • Chapter
  • First Online:
Prospects of Alternative Transportation Fuels

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

This chapter discusses implementation of hydrogen-enriched compressed natural gas (HCNG, also called hythane) in automotive engines. Existing passenger vehicles (PV) and commercial vehicles (CVs) are mainly dependent on fossil fuels such as gasoline and diesel. Due to depleting fossil fuel reserves, stringent emission legislations and on-road fuel economy requirements, IC engines are required to use cleaner alternate fuels. Several prominent alternative fuels have emerged such as alcohols, biodiesel and LPG but none of them are widely accepted for large-scale commercial applications. However, most countries have implemented blending of gasoline with alcohol (up to 5–15% v/v) for commercial applications. Compressed natural gas (CNG) has also been widely successful as a commercial automotive fuel. Over last couple of decades, number of CNG vehicles on the roads has increased drastically worldwide. CNG as an automotive fuel is commercially implemented for PVs and heavy-duty CVs. Most important quality of CNG is its lower emissions and it is accepted as a clean transport fuel. However, CNG suffers from severe shortcomings, especially related to its chemical and physical properties such as lower diffusivity, lean-burn limits, high ignition energy requirement, lower flame speed and large flame quenching distance compared to hydrogen. To improvise the properties of CNG as well as for implementing hydrogen for automotive applications, drawbacks of CNG are countered with hydrogen blending. This mixture is known as hydrogen-enriched compressed natural gas (HCNG/H2CNG or hythane). HCNG also improves feasibility of implementing hydrogen in automotive industry, which otherwise has serious safety concerns because of low ignition energy and wide flammability range of hydrogen. In this scenario, HCNG is fast emerging as a feasible alternative fuel to meet stringent emissions and fuel economy norms with minimal increase in cost and hardware of existing conventional gasoline/diesel engine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kumar Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hora, T.S., Agarwal, A.K. (2018). Compressed Natural Gas and Hythane for On-road Passenger and Commercial Vehicles. In: Singh, A., Agarwal, R., Agarwal, A., Dhar, A., Shukla, M. (eds) Prospects of Alternative Transportation Fuels. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7518-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7518-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7517-9

  • Online ISBN: 978-981-10-7518-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics