Recent Trends in -Omics-Based Methods and Techniques for Lung Disease Prevention

  • Raisah Salhab
  • Yashwant PathakEmail author


As the use of engineered nanoparticles (ENMs) in the manufacturing environment and consumer products increases, the concern over human exposure to ENMs is also increased. Due to varying physical and chemical characteristics of ENMs, the level of toxicity varies based on the shape, size, solubility, surface area, and surface charges of the ENM that is synthesized. However, with the lack of reference materials and inconsistent protocols, the validation of novel methods in order to determine toxicity has been deemed challenging; thus, there is an inability for an accurate assessment based on the human health risk assessment (HHRA) of environmental chemicals when exposure has occurred [1]. Also, current methods for chemical risk assessments are not without additional limitations as their high costs and the reliance on observing the effects of toxicity in animals lead to very few assessments done on chemicals that are in use in manufacturing [2]. With the use of toxicogenomics, there is the ability to determine the level of toxicity that is associated with certain properties of ENMs as well as assist in the identification of potential health hazards [2, 3]. DNA microarray, large-scale real-time quantitative polymerase chain reaction, and RNA sequencing are among the most commonly used technology within toxicogenomics [2].


  1. 1.
    Labib S et al (2015) Nano-risk science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol 13:15CrossRefGoogle Scholar
  2. 2.
    Bourdon-Lacombe JA, Moffat ID, Deveau M, Husain M, Auerbach S, Krewski D, Thomas RS, Bushel PR, Williams A, Yauk CL (2015) Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals. Regul Toxicol Pharmacol 72(2):292–309CrossRefPubMedGoogle Scholar
  3. 3.
    Nikota J et al (2015) Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials. Part Fibre Toxicol 13:25CrossRefGoogle Scholar
  4. 4.
    Pathak RR, Davé V (2014) Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol Biochem 33(5):1239–1260CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yick CY, Zwinderman AH, Kunst PW, Grünberg K, Mauad T, Dijkhuis A, Bel EH, Baas F, Lutter R, Sterk PJ (2013) Transcriptome sequencing (RNA-Seq) of human endobronchial biopsies: asthmaversuscontrols. Eur Respir J 42(3):662–670CrossRefPubMedGoogle Scholar
  6. 6.
    Kim WJ et al (2016) Comprehensive analysis of Transcriptome sequencing data in the lung tissues of COPD subjects. Int J Genomics 2015:206937Google Scholar
  7. 7.
    Yi Z et al (2012) Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One 7(8):e43184CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li H, Yang T, Li F-Y, Ning Q, Sun Z-M (2016) TLR4 overexpression inhibits endothelial PAS domain-containing protein 1 expression in the lower respiratory tract of patients with chronic COPD. Cell Physiol Biochem 39(2):685–692CrossRefPubMedGoogle Scholar
  9. 9.
    Hilzendeger C et al (2016) Reduced sputum expression of interferon-stimulated genes in severe COPD. Int J Chron Obstruct Pulmon Dis 11:1485–1494CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bhargava M et al (2014) Application of clinical proteomics in acute respiratory distress syndrome. Clin Transl Med 3:34CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11(1):49–79CrossRefPubMedGoogle Scholar
  12. 12.
    Peters-Hall JR et al (2015) Quantitative proteomics reveals an altered cystic fibrosis in vitro bronchial epithelial Secretome. Am J Respir Cell Mol Biol 53(1):22–32CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gao J, Ohlmeier S, Nieminen P, Toljamo T, Tiitinen S, Kanerva T, Bingle L, Araujo B, Rönty M, Höyhtyä M, Bingle CD, Mazur W, Pulkkinen V (2015) Elevated sputum BPIFB1 levels in smokers with chronic obstructive pulmonary disease: a longitudinal study. Am J Physiol Lung Cell Mol Physiol 309(1):L17–L26CrossRefPubMedGoogle Scholar
  14. 14.
    Franciosi L et al (2014) Susceptibility to COPD: differential proteomic profiling after acute smoking. PLoS One 9(7):e102037CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pelaia G et al (2014) Application of proteomics and Peptidomics to COPD. Biomed Res Int 2014:764581CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Teirilä L et al (2014) Proteomic changes of alveolar lining fluid in illnesses associated with exposure to inhaled non-infectious microbial particles. PLoS One 9(7):e102624CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gharib SA et al (2011) Induced sputum proteome in health and asthma. J Allergy Clin Immunol 128(6):1176–1184CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Muhlebach MS, Sha W (2015) Lessons learned from metabolomics in cystic fibrosis. Mol Cell Pediatr 2(1):9CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Quinn RA et al (2016) Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. Peer J 4:e2174CrossRefPubMedGoogle Scholar
  20. 20.
    Stringer KA et al (2016) Metabolomics and its application to acute lung diseases. Front Immunol 7:44CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wishart DS (2014) Advances in metabolite identification. Bioanalysis 3(15):1769–1782CrossRefGoogle Scholar
  22. 22.
    Esther CR, Coakley RD, Henderson AG, Zhou Y-H, Wright FA, Boucher RC (2015) Metabolomic evaluation of neutrophilic airway inflammation in cystic fibrosis. Chest 148(2):507–515CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mattarucchi E, Baraldi E, Guillou C (2011) Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomed Chromatogr 26(1):89–94CrossRefPubMedGoogle Scholar
  24. 24.
    Jung J, Kim S-H, Lee H-S, Choi GS, Jung Y-S, Ryu DH, Park H-S, Hwang G-S (2013) Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy 43(4):425–433CrossRefPubMedGoogle Scholar
  25. 25.
    Smolinska A, Hauschild AC, Fijten RR, Dallinga JW, Baumbach J, Van Schooten FJ (2014) Current breathomics—a review on data pre-processing techniques and machine learning in metabolomics breath analysis. J Breath Res 8(2):027105CrossRefPubMedGoogle Scholar
  26. 26.
    Fens N, Douma RA, Sterk PJ, Kamphuisen PW (2011) Breathomics as a diagnostic tool for pulmonary embolism. B27. Acute pulmonary embolism: diagnosis, risk stratification and treatment. Am J Respir Crit Care Med 183:A2678Google Scholar
  27. 27.
    Fens N, De Nijs SB, Peters S, Dekker T, Knobel HH, Vink TJ, Willard NP, Zwinderman AH, Krouwels FH, Janssen H-G, Lutter R, Sterk PJ (2011b) Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J 38(6):1301–1309CrossRefPubMedGoogle Scholar
  28. 28.
    Konstantinidi EM, Lappas AS, Tzortzi AS, Behrakis PK (2015) Exhaled breath condensate: technical and diagnostic aspects. Sci World J 2015:1–25CrossRefGoogle Scholar
  29. 29.
    Bos LD, Sterk PJ, Fowler SJ (2016) Breathomics in asthma and COPD. J Allergy Clin Immunol 138(4):970–976CrossRefPubMedGoogle Scholar
  30. 30.
    Carraro S, Giordano G, Reniero F, Carpi D, Stocchero M, Sterk PJ, Baraldi E (2012) Asthma severity in childhood and metabolomic profiling of breath condensate. Allergy 68(1):110–117CrossRefPubMedGoogle Scholar
  31. 31.
    Dushianthan A et al (2014) Phospholipid composition and kinetics in different endobronchial fractions from healthy volunteers. BMC Pulm Med 14:10CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Agassandian M, Mallampalli RK (2013) Surfactant phospholipid metabolism. Biochim Biophys Acta 1831(3):612–625CrossRefPubMedGoogle Scholar
  33. 33.
    Schwudke D et al (2011) Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb Perspect Biol 3(9):a004614CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zehethofer N et al (2015) Lipid analysis of airway epithelial cells for studying respiratory diseases. Chromatographia 78(5–6):403–413CrossRefPubMedGoogle Scholar
  35. 35.
    Tan Y et al (2016) Potential metabolic biomarkers to identify interstitial lung abnormalities. Int J Mol Sci 17(7):1148CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Long DL, Duncan Hite R, Grier BL, Suckling BN, Safta AM, Morris PE, Moseley Waite B, Seeds MC (2012) Secretory phospholipase A2-mediated depletion of Phosphatidylglycerol in early acute respiratory distress syndrome. Am J Med Sci 343(6):446–451CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Griese M et al (2015) Surfactant lipidomics in healthy children and childhood interstitial lung disease. PLoS One 10(2):e0117985CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ono JG, Worgall TS, Worgall S (2015) Airway reactivity and sphingolipids—implications for childhood asthma. Mol Cell Pediatr 2(1):13CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C, Ory DS, Petrache I, Schaffer JE, Reisdorph N, Kechris K (2015) Plasma Sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med 191(3):275–284CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Pharmacy, University of South Florida HealthTampaUSA

Personalised recommendations