Skip to main content

Epigenetic Patterns/Therapies Associated with Genetic Disorders

  • Chapter
  • First Online:
Genomics-Driven Healthcare

Abstract

Within the past three centuries, all-cause disease burden in developed countries has shifted from infectious to non-communicable (NCD)/genetic based diseases including cardiovascular conditions, cancer, neuropsychiatric conditions, and diabetes. Factors accounting for this drift include discoveries in vaccination (e.g., tetanus, cholera, typhoid, plague, anthrax, and tuberculosis), antibiotics, advances in medical diagnostics, lasers, surgical techniques, and routine medicines to treat almost every type of systemic imbalance. Moreover, advances in public health, sanitation, food safety, and geriatric sciences are creating extended life expectancy, where age-related illnesses (osteoarthritis, back pain, neurodegenerative conditions) in addition to NCDs are plaguing an ever-growing elderly population. The age-related risk for these diseases is now worsened by aggregation of global industrial pollutants, where the World Health Organization (WHO) now uses the term “environmental burden of disease” to describe adverse effects of a man-made climate, ecosystem degradation, cumulative rise in pollutants, noise, and electromagnetic fields, etc. While epigenetic environmental triggers can alter disease risk, the epigenome contains a plethora of drug targets which can alter the expression of pathological gene traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pal LR, Yu CH, Mount SM, Moult J (2015) Insights from GWAS: emerging landscape of mechanisms underlying complex trait disease. BMC Genomics 16(Suppl 8):S4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Huertas-Vazquez A, Nelson CP, Sinsheimer JS, Reinier K, Uy-Evanado A, Teodorescu C, Ayala J, Hall AS, Gunson K, Jui J et al (2015) Cumulative effects of common genetic variants on risk of sudden cardiac death. Int J Cardiol Heart Vasc 7:88–91

    PubMed  PubMed Central  Google Scholar 

  3. Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K, Wellcome Trust Case Control Consortium 2 (WTCCC2), Surrogate Markers for Micro- and Macro-Vascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) Study Group, Morris AD et al (2015) A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain 19:392–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, Ripke S, Gusareva ES, Annese V, Hauser SL et al (2015) High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 47:172–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang Y, Li D, Wei P (2015) Powerful Tukey’s One Degree-of-Freedom Test for detecting gene-gene and gene-environment interactions. Cancer Inform 14:209–218

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Mazzio EA, Soliman KF (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7:119–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Shinchi Y, Hieda M, Nishioka Y, Matsumoto A, Yokoyama Y, Kimura H, Matsuura S, Matsuura N (2015) SUV420H2 suppresses breast cancer cell invasion through down regulation of the SH2 domain-containing focal adhesion protein tensin-3. Exp Cell Res 334:90–99

    Article  PubMed  CAS  Google Scholar 

  8. Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, Kang GH (2014) Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 9:e100429

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhuo C, Li Q, Wu Y, Li Y, Nie J, Li D, Peng J, Lian P, Li B, Cai G et al (2015) LINE-1 hypomethylation in normal colon mucosa is associated with poor survival in Chinese patients with sporadic colon cancer. Oncotarget 6:23820–23836

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tserga A, Binder AM, Michels KB (2017) Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. FASEB J 31:5149–5158

    Article  PubMed  CAS  Google Scholar 

  11. Wu MM, Yang F (2017) Research advances in the association between maternal intake of methyl donor nutrients during pregnancy and DNA methylation in offspring. Zhongguo Dang Dai Er Ke Za Zhi 19:601–606

    PubMed  Google Scholar 

  12. Stathopoulou A, Lucchiari G, Ooi SK (2014) DNA methylation is dispensable for suppression of the agouti viable yellow controlling element in murine embryonic stem cells. PLoS One 9:e107355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Weinhouse C, Anderson OS, Jones TR, Kim J, Liberman SA, Nahar MS, Rozek LS, Jirtle RL, Dolinoy DC (2011) An expression microarray approach for the identification of metastable epialleles in the mouse genome. Epigenetics 6:1105–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Singh S, Li SS (2012) Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13:10143–10153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Menzies KJ, Zhang H, Katsyuba E, Auwerx J (2016) Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol 12:43–60

    Article  PubMed  CAS  Google Scholar 

  16. Jiang X, West AA, Caudill MA (2014) Maternal choline supplementation: a nutritional approach for improving offspring health? Trends Endocrinol Metab 25:263–273

    Article  PubMed  CAS  Google Scholar 

  17. Lo CL, Zhou FC (2014) Environmental alterations of epigenetics prior to the birth. Int Rev Neurobiol 115:1–49

    Article  PubMed  PubMed Central  Google Scholar 

  18. Torres A, Newton SA, Crompton B, Borzutzky A, Neufeld EJ, Notarangelo L, Berry GT (2015) CSF 5-methyltetrahydrofolate serial monitoring to guide treatment of congenital folate malabsorption due to proton-coupled folate transporter (PCFT) deficiency. JIMD Rep 24:91–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huemer M, Mulder-Bleile R, Burda P, Froese DS, Suormala T, Zeev BB, Chinnery PF, Dionisi-Vici C, Dobbelaere D, Gokcay G et al (2016) Clinical pattern, mutations and in vitro residual activity in 33 patients with severe 5, 10 methylenetetrahydrofolate reductase (MTHFR) deficiency. J Inherit Metab Dis 39:115–124

    Article  PubMed  CAS  Google Scholar 

  20. Jadavji NM, Deng L, Malysheva O, Caudill MA, Rozen R (2015) MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring. Neuroscience 300:1–9

    Article  PubMed  CAS  Google Scholar 

  21. Burda P, Kuster A, Hjalmarson O, Suormala T, Burer C, Lutz S, Roussey G, Christa L, Asin-Cayuela J, Kollberg G et al (2015) Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation, and response to folic and folinic acid treatment. J Inherit Metab Dis 38:863–872

    Article  PubMed  CAS  Google Scholar 

  22. Tomizawa H, Matsuzawa D, Ishii D, Matsuda S, Kawai K, Mashimo Y, Sutoh C, Shimizu E (2015) Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus. Genes Brain Behav 14:301–309

    Article  PubMed  CAS  Google Scholar 

  23. El Hajj Chehadeh S, Dreumont N, Willekens J, Canabady-Rochelle L, Jeannesson E, Alberto JM, Daval JL, Gueant JL, Leininger-Muller B (2014) Early methyl donor deficiency alters cAMP signaling pathway and neurosteroidogenesis in the cerebellum of female rat pups. Am J Physiol Endocrinol Metab 307:E1009–E1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sequeira JM, Ramaekers VT, Quadros EV (2013) The diagnostic utility of folate receptor autoantibodies in blood. Clin Chem Lab Med 51:545–554

    Article  PubMed  CAS  Google Scholar 

  25. Burda P, Schafer A, Suormala T, Rummel T, Burer C, Heuberger D, Frapolli M, Giunta C, Sokolova J, Vlaskova H et al (2015) Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: molecular genetic and enzymatic characterization of 76 patients. Hum Mutat 36:611–621

    Article  PubMed  CAS  Google Scholar 

  26. Watkins D, Rosenblatt DS (2012) Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis 35:665–670

    Article  PubMed  CAS  Google Scholar 

  27. Adaikalakoteswari A, Finer S, Voyias PD, McCarthy CM, Vatish M, Moore J, Smart-Halajko M, Bawazeer N, Al-Daghri NM, McTernan PG et al (2015) Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenetics 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ekim M, Ekim H, Yilmaz YK, Kulah B, Polat MF, Gocmen AY (2015) Study on relationships among deep vein thrombosis, homocysteine & related B group vitamins. Pak J Med Sci 31:398–402

    Article  PubMed  PubMed Central  Google Scholar 

  29. Awan Z, Aljenedil S, Rosenblatt DS, Cusson J, Gilfix BM, Genest J (2014) Severe hyperhomocysteinemia due to cystathionine beta-synthase deficiency, and Factor V Leiden mutation in a patient with recurrent venous thrombosis. Thromb J 12:30

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thomas D, Chandra J, Sharma S, Jain A, Pemde HK (2015) Determinants of nutritional anemia in adolescents. Indian Pediatr 52:867–869

    Article  PubMed  Google Scholar 

  31. Noori N, Miri-Moghaddam E, Dejkam A, Garmie Y, Bazi A (2017) Are polymorphisms in MTRR A66G and MTHFR C677T genes associated with congenital heart diseases in Iranian population? Caspian J Intern Med 8:83–90

    PubMed  PubMed Central  Google Scholar 

  32. Abdolmaleky HM, Zhou JR, Thiagalingam S (2015) An update on the epigenetics of psychotic diseases and autism. Epigenomics 7:427–449

    Article  PubMed  CAS  Google Scholar 

  33. Harris RA, Nagy-Szakal D, Mir SA, Frank E, Szigeti R, Kaplan JL, Bronsky J, Opekun A, Ferry GD, Winter H, Kellermayer R (2014) DNA methylation-associated colonic mucosal immune and defense responses in treatment-naive pediatric ulcerative colitis. Epigenetics 9:1131–1137

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kraiczy J, Nayak K, Ross A, Raine T, Mak TN, Gasparetto M, Cario E, Rakyan V, Heuschkel R, Zilbauer M (2016) Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease. Mucosal Immunol 9:647–658

    Article  PubMed  CAS  Google Scholar 

  35. Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Ryden M, Andersson DP, Henriksson J, Perfilyev A, Ling C et al (2015) The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes 39:910–919

    Article  CAS  Google Scholar 

  36. Houde AA, Legare C, Biron S, Lescelleur O, Biertho L, Marceau S, Tchernof A, Vohl MC, Hivert MF, Bouchard L (2015) Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Med Genet 16:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Canivell S, Ruano EG, Siso-Almirall A, Kostov B, Gonzalez-de Paz L, Fernandez-Rebollo E, Hanzu FA, Parrizas M, Novials A, Gomis R (2014) Differential methylation of TCF7L2 promoter in peripheral blood DNA in newly diagnosed, drug-naive patients with type 2 diabetes. PLoS One 9:e99310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhu X, Shan L, Wang F, Wang J, Wang F, Shen G, Liu X, Wang B, Yuan Y, Ying J, Yang H (2015) Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res Treat 150:479–486

    Article  PubMed  CAS  Google Scholar 

  39. Zhao X, Cui Y, Li Y, Liang S, Zhang Y, Xie L, Xia Z, Du J, Wei L, Li Y (2015) Significance of TSLC1 gene methylation and TSLC1 protein expression in the progression of cervical lesions. Zhonghua Zhong Liu Za Zhi 37:356–360

    PubMed  CAS  Google Scholar 

  40. Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, Consortium F, Drablos F (2015) EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database (Oxford) 2015:bav067

    Article  CAS  Google Scholar 

  41. Kosho T, Miyake N, Carey JC (2014) Coffin-Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: historical review and recent advances using next generation sequencing. Am J Med Genet C Semin Med Genet 166C:241–251

    Article  PubMed  CAS  Google Scholar 

  42. Santen GW, Clayton-Smith J, ARID1B-CSS consortium (2014) The ARID1B phenotype: what we have learned so far. Am J Med Genet C Semin Med Genet 166C:276–289

    Article  PubMed  CAS  Google Scholar 

  43. Salavaty A (2015) Carcinogenic effects of circadian disruption: an epigenetic viewpoint. Chin J Cancer 34:38

    Article  PubMed Central  CAS  Google Scholar 

  44. Powell WT, LaSalle JM (2015) Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet 24:R1–R9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Miyake N, Tsurusaki Y, Matsumoto N (2014) Numerous BAF complex genes are mutated in Coffin-Siris syndrome. Am J Med Genet C Semin Med Genet 166C:257–261

    Article  PubMed  CAS  Google Scholar 

  46. Briand N, Collas P (2018) Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 9:216–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Singh V, Singh LC, Singh AP, Sharma J, Borthakur BB, Debnath A, Rai AK, Phukan RK, Mahanta J, Kataki AC et al (2015) Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population. Am J Cancer Res 5:979–999

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Haggarty P (2015) Genetic and metabolic determinants of human epigenetic variation. Curr Opin Clin Nutr Metab Care 18:334–338

    Article  PubMed  CAS  Google Scholar 

  49. Lee JJ, Sholl LM, Lindeman NI, Granter SR, Laga AC, Shivdasani P, Chin G, Luke JJ, Ott PA, Hodi FS et al (2015) Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naive patient melanomas. Clin Epigenetics 7:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lu XL, Wang L, Chang SY, Shangguan SF, Wang Z, Wu LH, Zou JZ, Xiao P, Li R, Bao YH et al (2016) Sonic Hedgehog signaling affected by promoter hypermethylation induces aberrant Gli2 expression in Spina bifida. Mol Neurobiol 53:5413–5424

    Article  PubMed  CAS  Google Scholar 

  51. Tang KF, Li YL, Wang HY (2015) Quantitative assessment of maternal biomarkers related to one-carbon metabolism and neural tube defects. Sci Rep 5:8510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu H, Zhu P, Geng X, Liu Z, Cui L, Gao Z, Jiang B, Yang L (2017) Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet 295:1105–1118

    Article  PubMed  CAS  Google Scholar 

  53. Gueant JL, Daval JL, Vert P, Nicolas JP (2012) Folates and fetal programming: role of epigenetics and epigenomics. Bull Acad Natl Med 196:1829–1842

    PubMed  CAS  Google Scholar 

  54. Ji Y, Wu Z, Dai Z, Sun K, Wang J, Wu G (2016) Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 27:1–8

    Article  PubMed  CAS  Google Scholar 

  55. Godfrey KM (2002) The role of the placenta in fetal programming-a review. Placenta 23 Suppl A:S20–S27

    Article  PubMed  Google Scholar 

  56. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  PubMed  CAS  Google Scholar 

  57. Sallmen M (2001) Exposure to lead and male fertility. Int J Occup Med Environ Health 14:219–222

    PubMed  CAS  Google Scholar 

  58. Radwan M, Jurewicz J, Polanska K, Sobala W, Radwan P, Bochenek M, Hanke W (2016) Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann Hum Biol 43:50–56

    Article  PubMed  Google Scholar 

  59. Pourie G, Martin N, Bossenmeyer-Pourie C, Akchiche N, Gueant-Rodriguez RM, Geoffroy A, Jeannesson E, Chehadeh Sel H, Mimoun K, Brachet P et al (2015) Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor alpha. FASEB J 29:3713–3725

    Article  PubMed  CAS  Google Scholar 

  60. Mueller JK, Heger S (2014) Endocrine disrupting chemicals affect the gonadotropin releasing hormone neuronal network. Reprod Toxicol 44:73–84

    Article  PubMed  CAS  Google Scholar 

  61. Yang CY, Huang TS, Lin KC, Kuo P, Tsai PC, Guo YL (2011) Menstrual effects among women exposed to polychlorinated biphenyls and dibenzofurans. Environ Res 111:288–294

    Article  PubMed  CAS  Google Scholar 

  62. Liu Y, Mei C, Liu H, Wang H, Zeng G, Lin J, Xu M (2014) Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem Biophys Res Commun 451:592–598

    Article  PubMed  CAS  Google Scholar 

  63. Park CH, Lim KT (2010) Phytoglycoprotein (75 kDa) suppresses release of histamine and expression of IL-4 and IFN- gamma in BPA-treated RBL-2H3 cells. Immunol Investig 39:171–185

    Article  CAS  Google Scholar 

  64. O’Brien E, Dolinoy DC, Mancuso P (2014) Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J Immunotoxicol 11:205–212

    Article  PubMed  Google Scholar 

  65. Luo G, Wang S, Li Z, Wei R, Zhang L, Liu H, Wang C, Niu R, Wang J (2014) Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. Toxicol Sci 140:364–373

    Article  PubMed  CAS  Google Scholar 

  66. Park MA, Hwang KA, Choi KC (2011) Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: do they have tumorigenic or anti-tumorigenic property? Lab Anim Res 27:265–273

    Article  PubMed  PubMed Central  Google Scholar 

  67. La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, Stecca L, Perra G, Mancini FR, Marci R et al (2014) Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. Int J Environ Res Public Health 11:10146–10164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Vieweg M, Dvorakova-Hortova K, Dudkova B, Waliszewski P, Otte M, Oels B, Hajimohammad A, Turley H, Schorsch M, Schuppe HC et al (2015) Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clin Epigenetics 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, Piane LD, Kolahi K, Ameri K, Maltepe E, Rinaudo PF (2014) Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155:1956–1969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Melamed N, Choufani S, Wilkins-Haug LE, Koren G, Weksberg R (2015) Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies. Epigenetics 10:474–483

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rexhaj E, Pireva A, Paoloni-Giacobino A, Allemann Y, Cerny D, Dessen P, Sartori C, Scherrer U, Rimoldi SF (2015) Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am J Physiol Heart Circ Physiol 309:H1151–H1156

    Article  PubMed  CAS  Google Scholar 

  72. Scherrer U, Rexhaj E, Allemann Y, Sartori C, Rimoldi SF (2015) Cardiovascular dysfunction in children conceived by assisted reproductive technologies. Eur Heart J 36:1583–1589

    Article  PubMed  Google Scholar 

  73. Cetin I, Cozzi V, Antonazzo P (2003) Fetal development after assisted reproduction--a review. Placenta 24 Suppl B:S104–S113

    Article  PubMed  CAS  Google Scholar 

  74. Gosden R, Trasler J, Lucifero D, Faddy M (2003) Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361:1975–1977

    Article  PubMed  Google Scholar 

  75. Anifandis G, Messini CI, Dafopoulos K, Messinis IE (2015) Genes and conditions controlling mammalian pre- and post-implantation embryo development. Curr Genomics 16:32–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Tobi EW, Slieker RC, Stein AD, Suchiman HE, Slagboom PE, van Zwet EW, Heijmans BT, Lumey LH (2015) Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 44:1211–1223

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slieker RC, Stok AP, Thijssen PE, Muller F et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. van Abeelen AF, Elias SG, de Jong PA, Grobbee DE, Bossuyt PM, van der Schouw YT, Roseboom TJ, Uiterwaal CS (2013) Famine in the young and risk of later hospitalization for COPD and asthma. PLoS One 8:e82636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ginty AT, Carroll D, Roseboom TJ, Phillips AC, de Rooij SR (2013) Depression and anxiety are associated with a diagnosis of hypertension 5 years later in a cohort of late middle-aged men and women. J Hum Hypertens 27:187–190

    Article  PubMed  CAS  Google Scholar 

  80. Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145

    Article  PubMed  Google Scholar 

  81. de Rooij SR, Roseboom TJ (2013) The developmental origins of ageing: study protocol for the Dutch famine birth cohort study on ageing. BMJ Open 3

    Google Scholar 

  82. van Abeelen AF, Veenendaal MV, Painter RC, de Rooij SR, Dijkgraaf MG, Bossuyt PM, Elias SG, Grobbee DE, Uiterwaal CS, Roseboom TJ (2012) Survival effects of prenatal famine exposure. Am J Clin Nutr 95:179–183

    Article  PubMed  CAS  Google Scholar 

  83. El Hajj N, Schneider E, Lehnen H, Haaf T (2014) Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction 148:R111–R120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66(Suppl 2):22–33

    Article  PubMed  CAS  Google Scholar 

  85. Kuriyan R, Thankachan P, Selvam S, Pauline M, Srinivasan K, Kamath-Jha S, Vinoy S, Misra S, Finnegan Y, Kurpad AV (2016) The effects of regular consumption of a multiple micronutrient fortified milk beverage on the micronutrient status of school children and on their mental and physical performance. Clin Nutr 35:1908–1908

    Article  CAS  Google Scholar 

  86. Christensen KE, Deng L, Bahous RH, Jerome-Majewska LA, Rozen R (2015) MTHFD1 formyltetrahydrofolate synthetase deficiency, a model for the MTHFD1 R653Q variant, leads to congenital heart defects in mice. Birth Defects Res A Clin Mol Teratol 103:1031–1038

    Article  PubMed  CAS  Google Scholar 

  87. Huhta JC, Linask K (2015) When should we prescribe high-dose folic acid to prevent congenital heart defects? Curr Opin Cardiol 30:125–131

    Article  PubMed  Google Scholar 

  88. Zuckerman C, Blumkin E, Melamed O, Golan HM (2015) Glutamatergic synapse protein composition of wild-type mice is sensitive to in utero MTHFR genotype and the timing of neonatal vigabatrin exposure. Eur Neuropsychopharmacol 25:1787–1802

    Article  PubMed  CAS  Google Scholar 

  89. Chen G, Broseus J, Hergalant S, Donnart A, Chevalier C, Bolanos-Jimenez F, Gueant JL, Houlgatte R (2015) Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: relevance to nonalcoholic liver disease. Mol Nutr Food Res 59:293–302

    Article  PubMed  CAS  Google Scholar 

  90. Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, Riva E, Giovannini M (2014) Epigenetic effects of human breast milk. Nutrients 6:1711–1724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Noutsios GT, Floros J (2014) Childhood asthma: causes, risks, and protective factors; a role of innate immunity. Swiss Med Wkly 144:w14036

    PubMed  Google Scholar 

  92. Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28(Suppl 1):1–14

    Article  PubMed  Google Scholar 

  93. Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek EM (2013) Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr 98:586S–593S

    Article  PubMed  CAS  Google Scholar 

  94. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F (2015) MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 12:13981–14020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Melnik BC, John SM, Schmitz G (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 12:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Porta F, Mussa A, Baldassarre G, Perduca V, Farina D, Spada M, Ponzone A (2016) Genealogy of breastfeeding. Eur J Pediatr 175:105–112

    Article  PubMed  Google Scholar 

  97. Veazey KJ, Parnell SE, Miranda RC, Golding MC (2015) Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics Chromatin 8:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS (2014) Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERalpha alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect 122:262–268

    Article  PubMed  Google Scholar 

  99. Walker DM, Gore AC (2011) Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol 7:197–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Paoloni-Giacobino A (2014) Epigenetic effects of methoxychlor and vinclozolin on male gametes. Vitam Horm 94:211–227

    Article  PubMed  CAS  Google Scholar 

  101. Mazzoccoli G, Pazienza V, Vinciguerra M (2012) Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 29:227–251

    Article  PubMed  CAS  Google Scholar 

  102. Pusceddu I, Herrmann M, Kirsch SH, Werner C, Hubner U, Bodis M, Laufs U, Wagenpfeil S, Geisel J, Herrmann W (2016) Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr 55:1863–1873

    Article  PubMed  CAS  Google Scholar 

  103. Zhou J, Yong WP, Yap CS, Vijayaraghavan A, Sinha RA, Singh BK, Xiu S, Manesh S, Ngo A, Lim A et al (2015) An integrative approach identified genes associated with drug response in gastric cancer. Carcinogenesis 36:441–451

    Article  PubMed  CAS  Google Scholar 

  104. Wu Y, Sarkissyan M, Vadgama JV (2015) Epigenetics in breast and prostate cancer. Methods Mol Biol 1238:425–466

    Article  PubMed  PubMed Central  Google Scholar 

  105. Berry JM, Cao DJ, Rothermel BA, Hill JA (2008) Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 7:53–67

    Article  PubMed  CAS  Google Scholar 

  106. Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113:51–59

    Article  PubMed  CAS  Google Scholar 

  107. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280:145–153

    Article  PubMed  CAS  Google Scholar 

  108. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32:591–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. O’Sullivan JM, Doynova MD, Antony J, Pichlmuller F, Horsfield JA (2014) Insights from space: potential role of diet in the spatial organization of chromosomes. Nutrients 6:5724–5739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172:2756–2768

    Article  PubMed  CAS  Google Scholar 

  111. Li WX, Dai SX, Zheng JJ, Liu JQ, Huang JF (2015) Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients 7:6670–6687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Klarich DS, Brasser SM, Hong MY (2015) Moderate alcohol consumption and colorectal cancer risk. Alcohol Clin Exp Res 39:1280–1291

    Article  PubMed  CAS  Google Scholar 

  113. Zhang D, Wen X, Wu W, Guo Y, Cui W (2015) Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35,758 individuals. PLoS One 10:e0123423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Chen X, Wang J, Bai L, Ding L, Wu T, Bai L, Xu J, Sun X (2015) Interaction between folate deficiency and aberrant expression related to fragile histidine triad gene in the progression of cervical cancerization. Zhonghua Liu Xing Bing Xue Za Zhi 36:387–392

    PubMed  CAS  Google Scholar 

  115. Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Canto C, Marchese AE, Vinciguerra M (2015) Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr 10:480

    Article  PubMed  CAS  Google Scholar 

  116. Pirouzpanah S, Taleban FA, Mehdipour P, Atri M (2015) Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. J Mol Med (Berl) 93:917–934

    Article  CAS  Google Scholar 

  117. Yu X, Liu R, Zhao G, Zheng M, Chen J, Wen J (2014) Folate supplementation modifies CCAAT/enhancer-binding protein alpha methylation to mediate differentiation of preadipocytes in chickens. Poult Sci 93:2596–2603

    Article  PubMed  CAS  Google Scholar 

  118. Liu H, Li W, Zhao S, Zhang X, Zhang M, Xiao Y, Wilson JX, Huang G (2016) Folic acid attenuates the effects of amyloid beta oligomers on DNA methylation in neuronal cells. Eur J Nutr 55:1849–1862

    Article  PubMed  CAS  Google Scholar 

  119. Li W, Jiang M, Xiao Y, Zhang X, Cui S, Huang G (2015) Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J Nutr Health Aging 19:123–129

    Article  PubMed  CAS  Google Scholar 

  120. Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10:281–288

    Article  PubMed  PubMed Central  Google Scholar 

  121. Li W, Liu H, Yu M, Zhang X, Zhang M, Wilson JX, Huang G (2015) Folic acid administration inhibits amyloid beta-peptide accumulation in APP/PS1 transgenic mice. J Nutr Biochem 26:883–891

    Article  PubMed  CAS  Google Scholar 

  122. Kalani A, Kamat PK, Givvimani S, Brown K, Metreveli N, Tyagi SC, Tyagi N (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52:202–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ormazabal A, Casado M, Molero-Luis M, Montoya J, Rahman S, Aylett SB, Hargreaves I, Heales S, Artuch R (2015) Can folic acid have a role in mitochondrial disorders? Drug Discov Today 20:1349–1354

    Article  PubMed  CAS  Google Scholar 

  124. Araujo JR, Martel F, Borges N, Araujo JM, Keating E (2015) Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Res Rev 22:9–19

    Article  PubMed  CAS  Google Scholar 

  125. Ramaekers VT, Thony B, Sequeira JM, Ansseau M, Philippe P, Boemer F, Bours V, Quadros EV (2014) Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies. Mol Genet Metab 113:307–314

    Article  PubMed  CAS  Google Scholar 

  126. Malaguarnera G, Gagliano C, Salomone S, Giordano M, Bucolo C, Pappalardo A, Drago F, Caraci F, Avitabile T, Motta M (2015) Folate status in type 2 diabetic patients with and without retinopathy. Clin Ophthalmol 9:1437–1442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. McGarel C, Pentieva K, Strain JJ, McNulty H (2015) Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc 74:46–55

    Article  PubMed  CAS  Google Scholar 

  128. Ma F, Wu T, Zhao J, Han F, Marseglia A, Liu H, Huang G (2016) Effects of 6-month folic acid supplementation on cognitive function and blood biomarkers in mild cognitive impairment: a randomized controlled trial in China. J Gerontol A Biol Sci Med Sci 71:1376–1383

    Article  PubMed  CAS  Google Scholar 

  129. Duong MC, Mora-Plazas M, Marin C, Villamor E (2015) Vitamin B-12 deficiency in children is associated with grade repetition and school absenteeism, independent of folate, iron, zinc, or vitamin a status biomarkers. J Nutr 145:1541–1548

    Article  PubMed  CAS  Google Scholar 

  130. Issac TG, Soundarya S, Christopher R, Chandra SR (2015) Vitamin B12 deficiency: an important reversible co-morbidity in neuropsychiatric manifestations. Indian J Psychol Med 37:26–29

    Article  PubMed  PubMed Central  Google Scholar 

  131. Agrawal A, Ilango K, Singh PK, Karmakar D, Singh GP, Kumari R, Dubey GP (2015) Age dependent levels of plasma homocysteine and cognitive performance. Behav Brain Res 283:139–144

    Article  PubMed  CAS  Google Scholar 

  132. Choi SW, Tammen SA, Liu Z, Friso S (2015) A lifelong exposure to a western-style diet, but not aging, alters global DNA methylation in mouse colon. Nutr Res Pract 9:358–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Saldanha SN, Kala R, Tollefsbol TO (2014) Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res 324:40–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR (2014) Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med (Maywood) 239:302–310

    Article  CAS  Google Scholar 

  135. Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY (2014) Mechanisms by which pleiotropic amphiphilic 3 PUFA reduce colon cancer risk. Curr Colorectal Cancer Rep 10:442–452

    Article  PubMed  PubMed Central  Google Scholar 

  136. Triff K, Kim E, Chapkin RS (2015) Chemoprotective epigenetic mechanisms in a colorectal cancer model: modulation by n-3 PUFA in combination with fermentable fiber. Curr Pharmacol Rep 1:11–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Krakowsky RH, Tollefsbol TO (2015) Impact of nutrition on non-coding RNA epigenetics in breast and gynecological cancer. Front Nutr 2:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wagner AE, Terschluesen AM, Rimbach G (2013) Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. Oxidative Med Cell Longev 2013:964539

    Article  CAS  Google Scholar 

  139. Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562:8–15

    Article  PubMed  CAS  Google Scholar 

  140. Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218:59–70

    Article  PubMed  PubMed Central  Google Scholar 

  141. Henning SM, Wang P, Carpenter CL, Heber D (2013) Epigenetic effects of green tea polyphenols in cancer. Epigenomics 5:729–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam F. A. Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzio, E., Soliman, K.F.A. (2018). Epigenetic Patterns/Therapies Associated with Genetic Disorders. In: Pathak, Y. (eds) Genomics-Driven Healthcare. Adis, Singapore. https://doi.org/10.1007/978-981-10-7506-3_14

Download citation

Publish with us

Policies and ethics